Bulletin "Veterinary biotechnology"

Veterynarna biotehnologija – Veterinary biotechnology, 2018, 32(1), 190-201 [in Russian]. https://doi.org/10.31073/vet_biotech32(1)-25

POLYAKOV I., e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., IVANOVA L.

BINOMED GmbH, Ulm, Germany


The object of the present publication is the provision of new composition – analogue of fraction from cell wall of fungi, for use in a method of treating and preventing digital, interdigital dermatitis and interdigital phlegmone in cattle. Fungal antigens and their analogues, having a powerful effect on human and animal cells ex vivo, can be used in the creation of polyvalent immunobiological agents, for controlling animal diseases, by affecting the body's defence system. Our studies have shown that with the help of a synthetic analogue of the cell wall of fungi (Binovac® IDD), it was possible not only to treat infectious diseases of the extremities of cattle, but also to prevent the manifestation of these diseases within 150 days. The mechanism for creating such immunity is yet to be studied. Also, in our opinion, it is necessary to conduct further studies of the use of polysaccharides for the treatment of other important pathologies of animals involving microorganisms such as mastitis and endometritis.

Keywords: colloidal polysaccharide; treating and preventing digital, interdigital dermatitis and interdigital phlegmone in cattle.


  1. Saidov, M.Z., Gadzhieva, N.S., Gavrilova, N.A., Shackih, A.V., Ivanova, Z.G. & Fedorov, A.V. (2012). Toll-receptory – raspoznajushhie receptory vrozhdennoj immunnoj sistemy i glaz (literaturnyj obzor) [Toll-receptors – recognizing the receptors of the innate immune system and the eye (literary review)]. Oftal'mohirurgija – Ophthalmosurgery, 3, 77–82 [in Russian].
  2. Brunner, M. (2015). Therapie des Sommerekzems mit Insol® Dermatophyton – eine Feldstudie. Berlin: Freie Univ. [in German].
  3. Boehme, K.W. & Compton, T. (2004). Innate sensing of viruses by toll-like receptors. J. Virol., 78, 7867–7873.
  4. Dronov, A. & Rohwer, J. (2007). Hinweise für eine immunmodulatorische Wirkung von Insol® Dermatophyton auf equine Leukozyten in vitro [Evidence for an immunomodulatory effect of Insol® Dermatophyton on equine leukocytes in vitro.] Abstractheft XVII. Tagung über Pferdekrankheiten im Rahmen der Equitana 2007 (102–104) und Vet-MedReport Sonderausgabe V4 I (3), 17 [in German].
  5. Antigenic preparations (2002). Patent US007090857B2. Retrieved from https://patentimages.storage.googleapis.com/81/ef/66/fda357eed6b263/US7090857.pdf
  6. Gehlen, H., Brunner, M., Klier, J. & Reese, S. (2016). Therapie des Sommerekzems mit Insol® Dermatophyton – eine Feldstudie [Therapy of summer eczema with Insol® Dermatophyton – a field study.]. Pferdeheilkunde –Pferdeheilkunde, 32, 306–315 [in German].
  7. Ivanova, L., Poliakov, I. (2006). Mycosis vaccines. EP 0956042 B1. Bulletin 2006/49.
  8. Jouault, T., Ibata-Ombetta, S., Takeuchi, O., et al. (2003). Candida albicans phospholipomannan is sensed through Toll-like receptors. J Infect Dis, 188, 165–172.
  9. Kataoka, K., Muta, T., Yamazaki, S., Takeshige, K. (2002). Activation of macrophages by linear (lright-arrow3)-beta-D-glucans. Implications for the recognition of fungi by innate immunity. J Biol Chem., 277, 36825–36831.
  10. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. (1996). The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in drosophila adults. Cell, 86, 973–983.
  11. Lebron, F., Vassallo, R., Puri, V. & Limper, A.H. (2003). Pneumocystis carinii cell wall beta-glucans initiate macrophage inflammatory responses through NF-kappaB activation. J Biol Chem, 278, 25001–25008.
  12. Mallison, J. (2015). Der klinische Fall – Der polyvalente Impfstoff Insol® Dermatophyton bei Patienten mit Equinen Sarkoiden [The clinical case – The polyvalent vaccine Insol® Dermatophyton in patients with equine sarcoids] Pferde Spiegel – Horse mirror, 18(04), 162–166 [in German].
  13. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, 6640, 394–397.
  14. Medzhitov, R. & Janeway, C. Jr. (2000). Innate immune recognition: mechanisms and pathways. Immunol Rev., 173, 89–97.
  15. Micera, A., Stampachiacchiere, B., Aronni, S., Santos, M.S. & Lambiase, A. (2005). Current Opinion in Allergy and Clinical Immunology, 5, 451–458.
  16. Muranski, P., Borman, Z.A., Kerkar, S.P., Klebanoff, C.A., Ji, Y., et al. (2011). Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity, 35, 972–985.
  17. Ozinsky. A., Underhill. D.M., Fontenot, J.D., et al. (2000). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl. AcadSci.USA, 97, 13766–13771.
  18. Pepper, M., Linehan, J.L., Pagan, A.J., Zell, T., Dileepan, T., et al. (2010). Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat Immunol., 11, 83–89.
  19. Polyakov, I. & Ivanova, L. (2017). Compositions for the treatment and prevetion of hoof and claw diseases. PCT/EP2017/056145. Retrieved from https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017158039.
  20. Preissegger–Ilgenfritz, M., Schmidt, P. & Fenner, A. (2005). Neue Erkenntnisse zum Einsatz von Insol Dermatophyton beim Fesselekzem des Pferdes, Present. [in German].
  21. Roeder, A., Kirschning, C.J., Rupec, R.A., Schaller, M., Weindl, G. & Korting, H.C. (2004). Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol., 42(6), 485–498.
  22. Shoham, S., Huang, C., Chen, J.M., et al. (2001). Toll-like receptor 4 mediates intracellular signalling without TNF-alpha release in response to Cryptococcus neoformans Polysaccharide capsule. J. Immunol, 166, 4620–4626.
  23. Tada, H., Nemoto, E., Shimauchi, H., et al. (2002). Saccharomyces cerevisiae and Candida albicans derived mannan induced production of tumour necrosis factor alpha by human monocytes in a CD 14- and Toll-like receptor 4-dependent manner. Microbiol Immunol., 46, 503–512.
  24. Takeda, K., Kaisho, T. & Akira, S. (2003). Toll-like receptors. Ann Rev Immunol., 21, 335–376.
  25. Werts, C., Tapping, R.I., Mathison, J.C., et al. (2001). Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechan-ism. Nat. Immunol., 2, 346–352.

Download full text in PDF