Bulletin "Veterinary biotechnology"

Veterynarna biotehnologija – Veterinary biotechnology, 2021, 39, 128-144 [in Ukrainian]. https://doi.org/10.31073/vet_biotech39-12

TSYGANOVYCH O.A.1,2, email: This email address is being protected from spambots. You need JavaScript enabled to view it., PROKOPENKO V.A.1,2, email: This email address is being protected from spambots. You need JavaScript enabled to view it., HORDA R.V.1, email: This email address is being protected from spambots. You need JavaScript enabled to view it., HOLODIUK O.P.1, email: This email address is being protected from spambots. You need JavaScript enabled to view it., KHROKALO L.A.2, email: This email address is being protected from spambots. You need JavaScript enabled to view it., SIRYK O.O.1,3,email: This email address is being protected from spambots. You need JavaScript enabled to view it.

1 F.D. Ovcharenko Institute of Biocolloidal Chemistry NAS Ukraine
2 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
3 Institute of Veterinary Medicine NAAS

PECTIN AS A STABILIZER OF NANOSIZED SOLS (AQUEOUS DISPERSIONS) OF SELENIUM

Introduction. The radical change in the properties of the substance during the transition to the nanometer range provides ample opportunities to obtain materials with unique reproducible properties for the needs of various industries. Of particular interest in these areas have recently been nanoparticles of selenium - a trace element that plays a vital role in living organisms, as a component of selenium-dependent proteins.

The goal of the work is the synthesis of selenium nanoparticles, using apple pectin (Pec) as a stabilizer and dispersant, in the redox system selenic acid - ascorbic acid, their characteristics, and the study of the effect on the growth of some cultures of microorganisms.

Materials and methods. SeNPs were characterized by SEM, FTIR, UV-VIS, and DLS methods. Studies of sols antibacterial properties were performed by measuring optical density.

Results of research and discussion. The UV-VIS spectrum of the colloidal solution obtained in brick-red color shows a wide maximum of the absorption band in the region of 300-350 nm, which indicates the formation of amorphous nanoselenium. A comparison of the Pec and SeNP-Pec FTIR-spectra shows the appearance of the characteristic absorption band 3403 cm-1 due to the oscillations of the hydroxyl groups, which means the emergence of a strong hydrogen bond between the hydroxyl groups of pectin and selenium nanoparticles. Thus, we can conclude that the process of stabilization of selenium nanoparticles takes place due to the formation of hydrogen bonds with the participation of hydroxyl and carboxyl groups of pectin molecules.

Photographs of selenium nanoparticles obtained by scanning electron microscopy show that the particles have a spherical shape and a size of about 100 nm. The particle size of SeNP-Pec was confirmed by the method of dynamic analysis of scattered light. The curve of distribution is characterized by the presence of one high peak, which indicates a narrow size distribution of nanoparticles, which is about 80 nm.

The study of the effect of selenium sols, stabilized with pectin, on the growth activity of E. coli and B. subtilis, showed that the tested sols do not show bactericidal properties, but have an inhibitory effect on growth cultures. In this case, the growth of E. coli under the action of sol decreased by 20%, while the growth of B. subtilis sol decreased by 60%.

Conclusions and prospects for further research. A method of chemical synthesis of selenium nanoparticles in the form of aggregatively stable aqueous sols using "green" precursors is proposed. It is based on the reduction of selenic acid with ascorbic acid and using apple pectin (Pec) as a stabilizer. It is shown that the interaction of its molecules with the surface of particles is ensured by the formation of hydrogen bonds. The size of the obtained spherical nanoparticles with amorphous structure, modified with pectin biomolecules, is 80-100 nm. It is shown that the obtained dispersions of nanoparticles do not show bactericidal action against the studied cultures of B. subtilis and E. coli, but inhibit their growth in the liquid medium, a more pronounced inhibitory effect of the sol was found on B. subtilis.

Keywords: nanosized selenium particles (SeNP), pectin (Pec), antibacterial properties, B. subtilis, E. coli.

REFERENCES

  1. Mykytiuk, M.V. (2011). Nanochastynky ta perspektyvy yikh zastosuvannia v biolohii i medytsyni [Nanoparticles and prospects for their application in biology and medicine]. Problemy ekolohii ta medytsyny – Problems of ecology and medicine, 15, 5-6, 41-49 [in Ukrainian].
  2. Ulberh, Z.R., Prokopenko, V.A., Tsyhanovych, O.A., & Horda, R.V. (2020). Suchasnyi stan doslidzhen z formuvannia nanochastynok selenu ta yikh vykorystannia v medytsyni [The current state of research on the formation of selenium nanoparticles and their use in medicine]. Khimiia, fizyka ta tekhnolohiia poverkhni – Chemistry, physics and surface technology, 11, 3, 347-367 [in Ukrainian].
  3. Siryk, O.O., Tsyhanovych, O.A., Prokopenko, V.A., Zhovnir, O.M., & Tiutiun, S.M. (2020). Nanorozmirni chastynky selenu – perspektyvnyi terapevtychnyi ahent z shyrokym spektrom dii dlia potreb veterynarii (ohliadova stattia) [Nanosized particles of selenium – a promising therapeutic agent with a broad spectrum of action for the needs of veterinary medicine (review article)]. Veterynarna biotekhnolohiia –Veterinary Biotechnology, 36, 155-165. https://doi.org/10.31073/vet_biotech36-16 [in Ukrainian].
  4. Gromova, O.A., & Gogoleva, I.V. (2007). Selen – vpechatljajushhie itogi i perspektivy primenenija [Selenium – impressive results and application prospects]. Trudnyj pacient – Difficult patient, 14, 5, 25-30 [in Russian].
  5. Vapirov, V.V., Shubina, M.Je., Vapirova, N.V., Belichenk, V.I., & Shubin, I.V. (2002). Nekotorye aspekty himii, jekologii i uchastija v razvitii patologii (Obzor) [Selenium. Some aspects of chemistry, ecology and participation in the development of pathology (review)].  VINITI (GCMNB)VINITI (SCNLS), D-26993, 74 [in Russian].
  6. Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., et al. (2018). Nano-selenium and its nanomedicine applications: a critical review. International journal of nanomedicine, 13, 2107-2128. https://doi.org/10.2147/IJN.S157541.
  7. Valueva, S.V., & Borovikova, L.N. (2010). Samoorganizacija, morfologija i termodinamicheskie harakteristiki selensoderzhashhih nanostruktur na osnove sil'nyh polikislot [Self-organization, morphology and thermodynamic characteristics of selenium-containing nanostructures based on strong polyacids]. Butlerovskie soobshhenija – Butlerov Communications, 20, 5, 52-61 [in Russian].
  8. Valueva, S.V., Suhanova, T.E., Borovikova, L.N., et al. (2011). Samoorganizacija i struktura selensoderzhashhih biologicheski aktivnyh nanosistem [Self-organization and structure of selenium-containing biologically active nanosystems]. Struktura i dinamika molekuljarnyh sistem –Structure and dynamics of molecular system, 10, 3-11 [in Russian].
  9. Valueva, S.V., Kipper, A.I., Kopejkin, V.V., et al. (2005). Vlijanie molekuljarnoj massy polimernoj matricy na morfologicheskie harakteristiki selensoderzhashhih nanostruktur i na ih ustojchivost' k vozdejstviju gidrodinamicheskogo polja [Influence of the molecular weight of a polymer matrix on the morphological characteristics of selenium-containing nanostructures and on their resistance to the influence of a hydrodynamic field]. Vysokomolekuljarnye soedinenija, Serija A – High-molecular compounds, Series A, 47, 3, 438-443 [in Russian].
  10. Kopejkin, V.V., Valueva, S.V., Kipper, A.I., Kalynyna, N.A., Sylynskaia, Y.H., Khlebosolova, E.N., et al. (2003). Samoorganizacija molekul poli-2-akrilamido-2-metilpropansul'fokisloty i dodecilsul'fata natrija na nanochasticah nul'valentnogo selena [Self-organization of molecules of poly-2-acrylamido-2-methylpropane sulfonic acid and sodium dodecyl sulfate on nanoparticles of zero-valent selenium]. Vysokomolekuljarnye soedinenija, Serija A – High-molecular compounds, Series A, 45, 6, 963-969 [in Russian].
  11. Valueva, S.V., Kipper, A.I., Kopejkin, V.V., Borovykova, L.N., Lavrentev, V.K., Ivanov, D.A., et al. (2006). Izuchenie processov formirovanija i morfologicheskih harakteristik selensoderzhashhih nanostruktur na osnove zhestkocepnyh molekul proizvodnyh celljulozy [Study of the formation processes and morphological characteristics of selenium-containing nanostructures based on rigid-chain molecules of cellulose derivatives]. Vysokomolekuljarnye soedinenija, Serija A – High-molecular compounds, Series A, 48, 8, 1403-1409 [in Russian].
  12. Zhang, S.Y., Zhang, J., Wang, H.Y., Chen, H.Y., & Zhang, S.Y. (2004). Synthesis of selenium nanoparticles in the presence of polysaccharides. Mater Lett, 58(21), 2590-2594. https://doi.org/ 10.1016/j.matlet.2004.03.031.
  13. Malhotra, S., Jha, N., & Desai, K. (2014). A superficial synthesis of selenium nanospheres using wet chemical approach. Int. J. Nanotechnol. Appl, 3, 7-14.
  14. Kong, H., Yang, J., Zhang, Y., Fang, Y., Nishinaria, K., & Phillipsac, G.O. (2014). Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int. J. Biol. Macromol, 65, 155-162. https://doi.org/10.1016/j.ijbiomac.2014.01.011.
  15. Shen, Y., Wang, X., Xie, A., Huang, L., Zhu, J., & Chen, L. (2008). Synthesis of dextran/Se nanocomposites for nanomedicine application. Mater .Chem. Phys., 109, 534-540. https://doi.org/10.1016/j.matchemphys.2008.01.016.
  16. Wu, H., Li, X., Liu, W., Chen,T., Li, Y., Zheng, W., et al. (2012). Surface decoration of selenium nanoparticles by mushroom polysaccharides-protein complexes to achieve enhanced cellular uptake and antiproliferative activity. Journal of Materials Chemistry, 22, 9602-9610. https://doi.org/10.1039/C2JM16828F.
  17. Zolotareva, A.M., Chirkina, T.F., Cybikova, D.C., & Babueva, C.M. (1998). Issledovanie funkcional'nyh svojstv oblepihovogo pektina [Research of functional properties of sea buckthorn pectin].  Himijarastitel'nogosyr'jaChemistryofvegetablerawmaterials, 1, 29-32 [in Russian].
  18. Qiu, W.Y., Wang, Y.Y., Wang, M., & Yan, J.K. (2018). Construction, stability, and enhanced antioxidant activity of pectindecorated selenium nanoparticles. Colloids and Surfaces B: Biointerfaces, 170, 692-700. https://doi.org/10.1016/j.colsurfb.2018.07.003
  19. Ahmed, H.B., Zahran, M.K., &Emam, H.E. (2016). Heatless synthesis of well dispersible Au nanoparticles using pectin biopolymer. International Journal of Biological Macromolecules, 91, 208-219. https://doi.org/10.1016/j.ijbiomac.2016.05.060.
  20. Shi, L., & Gunasekaran, S. (2008). Preparation of Pectin-ZnO nanocomposite. Nanoscale Res. Lett., 3, 491-495. https://doi.org/10.1007/s11671-008-9185-6.
  21. Zahran, M.K., Ahmed, H.B., & El-Rafie, M.H. (2014). Facile size-regulated synthesis of silver nanoparticles using pectin. Carbohydrate Polymers, 111, 971-978. https://doi.org/10.1016/j.carbpol.2014.05.028.
  22. Hira, I., Kumar, A., Kumari, R., Saini, A.K., & Saini, R.V. (2018). Pectin-guar gum-zinc oxide nanocomposite enhances human lymphosytes cytotoxisity towards lung and breast carsinomas. Mater Sci Eng C. Mater Biol Appl, 1, 90, 494-503. https://doi.org/10.1016/j.msec.2018.04.085.
  23. Tsyhanovych, O.A., Khrokalo, L.A., Siryk, O.O., Prokopenko, V.A., & Zhovnir, О.M. (2020). Nanorozmirni chastynky selenu, stabilizovani polivinilpirolidonom ta yikh antybakterialna aktyvnist [Nano-sized selenium particles stabilized with polyvinylpyrrolidone and their antibacterial activity]. Veterynarna biotekhnolohiia –Veterinary Biotechnology, 37, 108-118 [in Ukrainian]. https://doi.org/10.31073/vet_biotech37-11.
  24. Legonkova, O.A., Vasilev, V.G., Bozhkova, S.A., Terekhova, R.P., Ovhannisyan, A.S., Grigoriev, M.M., et al. (2019). Svojstva polivinilpirrolidonovyh gelej posle sterilizujushhih vozdejstvij [Properties of polyvinylpyrrolidone gels after sterilizing effects]. Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himiiQuestions of biological, medical and pharmaceutical chemistry, 22, 11, 19-24. https://doi.org/10.29296/25877313-2019-11-03 [in Russian].   
  25. Panova, Je.P., & Kaceva, G.N. (2012). Nanokompozity na osnove serebra i pektinovyh veshhestv [Nanocomposites based on silver and pectin substances].  Uchenye zapiski Tavricheskogo nacional'nogo universiteta im. V. I. Vernadskogo, Serija «Biologija, himija» –Scientific notes of the Tauride National University. VI Vernadsky, Series "Biology, Chemistry", 25(64), 3, 30-315 [in Russian].
  26. Valueva, S.V., Borovikova, L.N., Koreneva, V.V., Nazarkina, Ya.I., Kipper, A.I., & Kopeikin, V.V. (2007). Strukturno-morfologicheskie i biologicheskie svojstva nanochastic selena, stabilizirovannyh bych'im syvorotochnym al'buminom [Structural-morphological and biological properties of selenium nanoparticles stabilized by bovine serum albumin]. Zhurnal fizicheskoj himii  Journal of physical chemistry, 81, 7, 1329-1333 [in Russian].
  27. Zhang, Y., Wang, J., & Zhang, L. (2010). Creation of highly stable selenium nanoparticles capped with hyperbranched polysaccharide in water. Langmuir, 26(22), 17617-17623. https://doi.org/10.1021/la1033959.
  28. Xiao, Y., Huang, Q., Zheng, Z., Guan, H., & Liu, S. (2017). Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. Int. J. Biol. Macromol, 99, 483-491. https://doi.org/10.1016/j.ijbiomac.2017.03.016.
  29. Usmanova, S.R., Dzhonmurodov, A.S., Nazirova, H.I., et al. (2015). Issledovanie IK-Fur'e spektrov pektina tykvy [Investigation of IR-Fourier spectra of pumpkin pectin]. Materialy 12 Numanovskie chtenija posvjashh. 55 letiju so dnja rozhdenija d.h.n., professora Kukanieva M.A. – Materials 12 Numanov readings dedicated 55th anniversary of the birth of Dr. Kukaniev M.A., Dushanbe, 143-145 [in Russian].
  30. Hatko, Z.N. (2008). Infrakrasnye spektry sveklovichnogo pektina [Infrared spectra of beet pectin]. Novye tehnologii – New technologies, 5, 39-46 [in Russian].
  31. Luesakul, U., Komenek, S., Puthong, S., & Muangsin, N. (2016). Shape-controlled synthesis of cubic-like selenium nanoparticles via the self-assembly method. Carbohydr. Polym., 153, 435-444. https://doi.org/10.1016/j.carbpol.2016.08.004.

Download full text in PDF