Bulletin "Veterinary biotechnology"

Veterynarna biotekhnolohiia– Veterinary biotechnology, 2023, 42, 33-42 [in Ukrainian]. https://doi.org/10.31073/vet_biotech42-04

ZHOVNIR A. M., e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.MYNTSIUK E. P., e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Institute of Veterinary Medicine of the NAAS

 

MANNHEIMIA HAEMOLYTICA AS A CAUSE OF RESPIRATORY DISEASES IN SHEEP (REVIEW)

Introduction. Respiratory diseases cause significant economic losses to the livestock and goat industries worldwide. In the United States alone, this amount ranges from 1-3 billion USD annually. These diseases can occur as enzootic or sometimes as epizootic, making them a problem for agricultural enterprises. Until recently, the microorganism known as Pasteurella haemolytica, which was associated with respiratory disease in cattle, as well as respiratory disease and septicemia in sheep, has been reclassified as a separate genus Mannheimia.

The goal of the work is analysis the literature regarding the prevalence, etiological factors, and pathogenesis of sheep respiratory diseases caused by Mannheimia haemolytica.

Materials and methods. The study was conducted by analyzing foreign sources devoted to this problem.

Results of research and discussion. Mannheimiosis is a factor-infectious disease caused by the microorganism Mannheimia haemolytica, primarily affecting ruminants and accompanied by respiratory system damage. Certain predisposing stress factors causing its emergence. The most susceptible animals are primarily ruminants, including cattle, sheep, goats, yaks, buffalo, bison, mules, camels, donkeys, llamas, alpacas, and zebus.

Currently, M. haemolytica biotype A includes 12 serotypes A (A1, A2, A5, A6, A7, A8, A9, A12, A13, A14, A16, and A17) of which serotypes A1 and A2 have the most widespread and epidemiological significance, and 4 serotypes T.

Isolates of biotype A haemolytica are capable of causing respiratory disease and mastitis in cattle and sheep and septicemia in lambs, isolates of biotype T cause septicemia in young sheep, although it was classified as M. trehalosi.

The main symptoms of the disease associated with the development of respiratory syndrome occur in three phases: fever, respiratory system damage and septicemia. In sheep and goats a mastitic form of infection is also encountered.

Therapy for the disease involves usage of antimicrobial and anti-inflammatory agents.

Active prevention involves the usage of vaccines that protectanimals, and more importantly, reduces the circulation of the pathogen and reduces stress and eliminatesfactors that contribute to the disease.

Conclusions and prospects for further research. Mangeimiosis is a commondisease in sheep farms both in the world and in Ukraine. The difficulty indiagnosis and lack of information about this disease leads to the fact that veterinarians often make false diagnoses on the basis of which they develop measures toeliminate and prevent the disease. Prospects for further research – creation and testing of a polyvalent prophylactic agent against respiratory andclostridial diseases of sheep.

Keywords: Mannheimia haemolytica, Pasteurella multocida, bacterial pathogenesis, respiratory diseases.

REFERENCES

  1. Griffin, D., Chengappa, M.M., Kuszak, J., & McVey, D.S. (2010). Bacterial pathogens of the bovine respiratory disease complex. Vet Clin North Am Food Anim Pract, 26, 381-394. https://doi.org/10.1016/j.cvfa.2010.04.004.
  2. Crosby, S.D., Credille, B.C., Giguere, S., & Berghaus, R.D. (2018). Comparative efficacy of enrofloxacin to that of tulathromycin for the control of bovine respiratory disease and prevalence of antimicrobial resistance in Mannheimia haemolytica in calves at high risk of developing bovine respiratory disease. J Anim Sci, 96, 1259-1267. https://doi.org/10.1093/jas/sky054.
  3. Jeyaseelan, S., Sreevatsan, S., & Maheswaran, S.K. (2002). Role of Mannheimia haemolytica leukotoxin in the pathogenesis of bovine pneumonic pasteurellosis. Anim Health Res Rev, 3, 69-82. https://doi.org/10.1079/AHRR200242.
  4. Singh, K., Ritchey, J.W., & Confer, A.W. (2011). Mannheimia haemolytica: bacterial-host interactions in bovine pneumonia. Vet Pathol, 48, 338-348. https://doi.org/10.1177/0300985810377182.
  5. Mutters, R., Ihm, P., Pohl, S., Frederiksen, W., & Mannheim, W. (1985). Reclassification of the genus Pasteurella Trevisan 1887 on the basis of deoxyribonucleic acid homology, with proposals for the new species Pasteurella dagmatis, Pasteurella canis, Pasteurella stomatis, Pasteurella anatis, and Pasteurella langaa. Int J Syst Bacteriol, 35, 309-322.
  6. Fett, T., Zecchinon, L., Vanden Bergh, P., & Desmecht, D. (2009). Mannheimiosis: from a (molecular) fatal attraction to one of the most important ruminant breeding disease. Annales de Medecine Veterinaire, 153(1), 31-53.
  7. Mohamed, R.A., & Abdelsalam, E.B. (2008). A review on pneumonic pasteurellosis (Respiratory Mannheimiosis) with emphasis on pathogenesis, virulence mechanisms and predisposing factors. Bulgarian Journal of Veterinary Medicine, 11(3), 139-160.
  8. Laishevtcev, A.I. (2020). Mannheimiosis of cattle, sheep and goats. IOP Conference Series: Earth and Environmental Science, 548(7), 072038. doi:10.1088/1755-1315/548/7/072038.
  9. Kapustin, A.V., & Laishevtcev, A.I. (2016). Pasteurellosis of cattle caused by Mannheimia haemolytica. Russian Journal of Agricultural and Socio-Economic Sciences, 52(4),
    3-12. doi:10.18551/rjoas.2016-04.01.
  10. Kolchyk O.V. (2018). Distribution of associated infections of pigs in the farms of Ukraine. Veterinary biotechnology, 32(1), 372-377.
  11. Blackall, P.J., Bisgaard, M., & Stephens, C.P. (2002). Phenotypic characterisation of Australian sheep and cattle isolates of Mannheimia haemolytica, Mannheimia granulomatis and Mannheimia varigena. Australian Veterinary Journal, 80(1-2), 55-59. doi:10.1111/j.1751-0813.2002.tb11388.x.
  12. Cozens, D., Sutherland, E., Lauder, M., Taylor, G., Berry, C.C., & Davies, R.L. (2019). Pathogenic Mannheimia haemolytica Invades Differentiated Bovine Airway Epithelial Cells. Infection and Immunity, 87(6), e00078-19. doi:10.1128/IAI.00078-19.
  13. Ayalew, S., Blackwood, E.R., & Confer, A.W. (2006). Sequence diversity of the immunogenic outer membrane lipoprotein PlpE from Mannheimia haemolytica serotypes 1, 2, and 6. Veterinary Microbiology, 114(3-4), 260-268. doi:10.1016/j.vetmic.2005.11.067.
  14. Davies, R.L., & Donachie, W. (1996). Intra-specific diversity and host specificity within Pasteurella haemolytica based on variation of capsular polysaccharide, lipopolysaccharide and outer-membrane proteins. Microbiology, 142(7), 1895-1907. doi:10.1099/13500872-142-7-1895.
  15. Davies, R.L., & Lee, I. (2004). Sequence diversity and molecular evolution of the heat-modifiable outer membrane protein gene (ompA) of Mannheimia (Pasteurella) haemolytica, Mannheimia glucosida, and Pasteurella trehalosi. Journal of Bacteriology, 186, 5741-5752. doi: 10.1128/JB.186.17.5741-5752.2004.
  16. Davies, R.L., Whittam, T.S., & Selander, R.K. (2001). Sequence diversity and molecular evolution of the leukotoxin (lktA) gene in bovine and ovine strains of Mannheimia (Pasteurella) haemolytica. Journal of Bacteriology, 183, 1394-1404. doi: 10.1128/JB.183.4.1394-1404.2001.
  17. Klima, C.L., Cook, S.R., Zaheer, R., Laing, C., Gannon, V.P., Xu, Y., Rasmussen, J., Potter, A., Hendrick, S., Alexander, T.W., & McAllister, T.A. (2016). Comparative genomic analysis of Mannheimia haemolytica from bovine sources. PLoS One, 11, e0149520. doi: 10.1371/journal.pone.0149520.
  18. Lacroix, R.P., Duncan, J.R., Jenkins, R.P., Leitch, R.A., Perry, J.A., & Richards, J.C. (1993). Structural and serological specificities of Pasteurella haemolytica lipopolysaccharides. Infection and Immunity, 61, 170-181.
  19. Lee, I., & Davies, R.L. (2011). Evidence for a common gene pool and frequent recombinational exchange of the tbpBA operon in Mannheimia haemolytica, Mannheimia glucosida and Bibersteinia trehalosi. Microbiology, 157, 123-135. doi: 10.1099/mic.0.041236-0.
  20. Blackalu, P., Angen, Fegan, N., Blackall, L., Mutters, R., & Bisgaard, M. (2001). Characterisation of a novel Mannheimia sp from Australian feedlot cattle. Australian Veterinary Journal, 79, 634-639.
  21. Adamu, J.Y. (2007). Mannheimia haemolytica: Phylogeny and genetic analysis of its major virulence factors. Israel Journal of Veterinary Medicine, 62, 6-13.
  22. Sneath, P.H.A., & Stevens, M. (1990). Actinobacillus rossii sp. nov., Actinobacillus seminis sp. nov., nom. Rev., Pasteurella bettii sp. nov., Pasteurella lymphangitidis sp. nov., Pasteurella mairi sp. nov. and Pasteurella trehalosi sp. nov. International Journal of Systematic Bacteriology, 40, 148-153.
  23. Binham, D.P., Moore, R., & Richards, A.B. (1990). Comparison of DNA: DNA homology and enzymatic activity between Pasteurella haemolytica and related species. American Journal of Veterinary Research, 51, 1161-1166.
  24. Sneath, P.H., & Stevens, M. (1990). Actinobacillus rossii sp. nov., Actinobacillus seminis sp. nov., nom. rev., Pasteurella bettii sp. nov., Pasteurella lymphangitidis sp. nov, Pasteurella mairi sp. nov., and Pasteurella trehalosi sp. nov. International Journal of Systematic Bacteriology, 40, 148-153.
  25. Oppermann, T., Busse, N., & Czermak, P. (2017). Mannheimia haemolytica growth and leukotoxin production for vaccine manufacturing – A bioprocess review. Electronic Journal of Biotechnology, 28, 95-100. doi: 10.1016/j.ejbt.2017.06.001.
  26. Tucci, P., Estevez, V., Becco, L., Cabrera-Cabrera, F., Grotiuz, G., Reolon, E., & Zunino, P. (2016). Identification of Leukotoxin and other vaccine candidate proteins in a Mannheimia haemolytica commercial antigen. Heliyon, 2(9), e00158. https://doi.org/10.1016/ j.heliyon.2016.e00158.
  27. Batra, S.A., Shanthalingam, S., Donofrio, G., & Srikumaran, S. (2016). A chimeric protein comprising the immunogenic domains of Mannheimia haemolytica leukotoxin and outer membrane protein PlpE induces antibodies against leukotoxin and PlpE. Veterinary Immunology and Immunopathology, 175, 36-41. https://doi.org/10.1016/j.vetimm.2016.05.004.
  28. Cozens, D., Sutherland, E., Lauder, M., Taylor, G., Berry, C.C., Davies, R.L., & Bryant, C.E. (2019). Pathogenic Mannheimia haemolytica invades differentiated bovine airway epithelial cells. Infection and Immunity, 87 (6), e00078-19. https://doi.org/10.1128/IAI.00078-19.
  29. Iwanaga, N., & Kolls, J.K. (2019). Updates on T helper type 17 immunity in respiratory disease. Immunology, 156 (1), 3-8. https://doi.org/10.1111/imm.13006.
  30. Slate, J.R., Chriswell, B.O., Briggs, R.E., & McGill, J.L. (2021). The effects of Ursolic acid treatment on immunopathogenesis following Mannheimia haemolytica infections. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.784437.
  31. Briggs, R.E., Billing, S.R., Boatwright, W.D., Chriswell, B.O., Casas, E., Dassanayake, R.P., & Donofrio, G. (2021). Protection against Mycoplasma bovis infection in calves following intranasal vaccination with modified-live Mannheimia haemolytica expressing Mycoplasma antigens. Microbial Pathogenesis, 161, 105159. https://doi.org/10.1016/j.micpath.2021.105159.

Download full text in PDF