Bulletin "Veterinary biotechnology"

Veterynarna biotekhnolohiia– Veterinary biotechnology, 2023, 42, 56-66 [in Ukrainian]. https://doi.org/10.31073/vet_biotech42-07

KOSHEVOY V.I., e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., NAUMENKO S.V., e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

State Biotechnological University



Introduction. Since the beginning of the 21st century, there has been an active stage of the introduction of nanomaterials into biomedical research. The main condition for the possibility of using means in the reproduction of animals for therapeutic or preventive purposes is a systematic assessment of their toxicological parameters, especially reproductive toxicity. Despite the large number of toxicological studies of metal nanoparticles on various models, there is little systematic data on their reproductive toxicity.

The purpose of the work was to carry out a comprehensive analysis and generalization of data from literary sources regarding the reproductive toxicity of metal nanoparticles as components of nanobiotechnologies promising for animal reproduction.

Research materials and methods. The research used the methods of search, processing, analysis of specialized scientific literature from the Pubmed database, relating to the main parameters of reproductive toxicity of NP metals, especially the sexual function of males, and summarizing their data.

Research results and their discussion. Exposure to metal NPs causes bioaccumulation and toxic effects in the reproductive system, which confirms the potential risk for animals and human health and the environment. NPs can pass through hematotestinal, placental, and epithelial barriers that protect reproductive tissues and then accumulate in reproductive organs. These effects are related to composition, modification, concentration, agglomeration and route of administration. Note that the impact of NPs can be multidirectional, and some of them are effectively used to neutralize the toxic effects of others.

Conclusions and prospects for further research. Most metal and their oxides NPs have reproductive toxicity (RT), which limits the possibility of their use in animals (Ag-NPs; Ni-NPs; IO-NPs; ZnO-NPs; CeO2-NPs; TiO2-NPs). The main manifestations of RT are the impact on the germinal and endocrine function of the gonads, which in males is determined by a decrease in sperm quality parameters, morphological abnormalities and a decrease in sperm viability, histopathological changes in the testicles, and a low level of testosterone. A large number of studied NPs (Au-NPs; Pt-NPs; CaO-NPs; CuO-NPs; MoО3-NPs; Al2О3-NPs) today have no proven effect on the sexual function of animals, and some NPs (ZnO-NPs) due to antioxidant properties are used to neutralize the toxic effect of other NPs. The perspective of further research is the experimental substantiation of parameters of reproductive toxicity of metal NPs to assess the possibility of their use in nanobiotechnologies of animal reproduction.

Keywords: nanomaterials, toxicity, reproduction, gonads, sperm, sex hormones, nanobiotechnology.


  1. Koshevoy, V., Naumenko, S., Skliarov, P., Fedorenko, S., Kostyshyn, L. (2021). Male infertility: Pathogenetic significance of oxidative stress and antioxidant defence (review). Scientific Horizons, 24(6), 107-116. https://doi.org/10.48077/scihor.24(6).2021.107-116
  2. Skliarov, P., Fedorenko, S., Naumenko, S., Koshevoy, V., Pelyh, K. (2021). The development of phyto- and tissue origin medicines for veterinary reproductive issues. Scientific Horizons, 24(8), 15-25. https://doi.org/10.48077/scihor.24(8).2021.15-25
  3. Majeed, A., Javed, F., Akhtar, S., Saleem, U., Anwar, F., Ahmad, B., Nadhman, A., Shahnaz, G., Hussain, I., Hussain, S.Z., & Sohail, M.F. (2020). Green synthesized selenium doped zinc oxide nano-antibiotic: synthesis, characterization and evaluation of antimicrobial, nanotoxicity and teratogenicity potential. Journal of materials chemistry. B, 8(36), 8444-8458. https://doi.org/10.1039/d0tb01553a
  4. Jung, A., Kim, S.H., Yang, J.Y., Jeong, J., Lee, J.K., Oh, J.H., & Lee, J.H. (2021). Effect of Pulmonary Inflammation by Surface Functionalization of Zinc Oxide Nanoparticles. Toxics, 9(12), article number 336. https://doi.org/10.3390/toxics9120336.
  5. Koshevoy, V., Naumenko, S., Skliarov, P., Syniahovska, K., Vikulina, G., Klochkov, V., & Yefimova, S. (2022). Effect of gadolinium orthovanadate nanoparticles on male rabbits’ reproductive performance under oxidative stress. World’s Veterinary Journal, 12(3), 296-303. https://doi.org/10.54203/scil.2022.wvj37.
  6. Patisaul, H. B., Fenton, S. E., & Aylor, D. (2018). Animal models of endocrine disruption. Best practice & research. Clinical endocrinology & metabolism, 32(3), 283–297. https://doi.org/10.1016/j.beem.2018.03.011
  7. Cai, P., Feng, N., Zou, H., Gu, J., Liu, X., Liu, Z., Yuan, Y., & Bian, J. (2023). Zearalenone damages the male reproductive system of rats by destroying testicular focal adhesion. Environmental toxicology, 38(2), 278-288. https://doi.org/10.1002/tox.23694.
  8. Yang, X., Liu, P., Cui, Y., Xiao, B., Liu, M., Song, M., Huang, W., & Li, Y. (2020). Review of the Reproductive Toxicity of T-2 Toxin. Journal of agricultural and food chemistry, 68(3), 727-734. https://doi.org/10.1021/acs.jafc.9b07880.
  9. Anyanwu, B.O., & Orisakwe, O.E. (2020). Current mechanistic perspectives on male reproductive toxicity induced by heavy metals. Journal of environmental science and health. Part C, Toxicology and carcinogenesis, 38(3), 204-244. https://doi.org/10.1080/26896583.2020.1782116.
  10. Dantas, G.P.F., Ferraz, F.S., Andrade, L.M., & Costa, G.M.J. (2022). Male reproductive toxicity of inorganic nanoparticles in rodent models: A systematic review. Chemico-biological interactions, 363, article No. 110023. https://doi.org/10.1016/j.cbi.2022.110023.
  11. Sun, F., Wang, X., Zhang, P., Chen, Z., Guo, Z., & Shang, X. (2022). Reproductive toxicity investigation of silica nanoparticles in male pubertal mice. Environmental science and pollution research international, 29(24), 36640-36654. https://doi.org/10.1007/s11356-021-18215-6.
  12. Monnot, A.D., Kovochich, M., Bandara, S.B., Wilsey, J.T., Christian, W.V., Eichenbaum, G., Perkins, L.E.L., Hasgall, P., Taneja, M., Connor, K., Sague, J., Nasseri-Aghbosh, B., Marcello, S., Vreeke, M., Katz, L.B., Reverdy, E.E., Thelen, H., & Unice, K. (2021). A hazard evaluation of the reproductive/developmental toxicity of cobalt in medical devices. Regulatory toxicology and pharmacology: RTP, 123, article No. 104932. https://doi.org/10.1016/j.yrtph.2021.104932.
  13. Ajdary, M., Keyhanfar, F., Moosavi, M.A., Shabani, R., Mehdizadeh, M., & Varma, R.S. (2021). Potential toxicity of nanoparticles on the reproductive system animal models: A review. Journal of reproductive immunology, 148, article No. 103384. https://doi.org/10.1016/j.jri.2021.103384.
  14. Wang, Z., Zhang, T., Huang, F., & Wang, Z. (2018). The reproductive and developmental toxicity of nanoparticles: A bibliometric analysis. Toxicology and industrial health, 34(3), 169-177. https://doi.org/10.1177/0748233717744430.
  15. Santacruz-Márquez, R., González-De Los Santos, M., & Hernández-Ochoa, I. (2021). Ovarian toxicity of nanoparticles. Reproductive toxicology (Elmsford, N.Y.), 103, 79-95. https://doi.org/10.1016/j.reprotox.2021.06.002.
  16. Chrishtop, V.V., Mironov, V.A., Prilepskii, A.Y., Nikonorova, V.G., & Vinogradov, V.V. (2021). Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology, 15(2), 167-204. https://doi.org/10.1080/17435390.2020.1842934.
  17. Shehata, A.M., Salem, F.M.S., El-Saied, E.M., Abd El-Rahman, S.S., Mahmoud, M.Y., & Noshy, P.A. (2021). Zinc Nanoparticles Ameliorate the Reproductive Toxicity Induced by Silver Nanoparticles in Male Rats. International journal of nanomedicine, 16, 2555-2568. https://doi.org/10.2147/IJN.S307189.
  18. Choudhary, A., Singh, S., & Ravichandiran, V. (2022). Toxicity, preparation methods and applications of silver nanoparticles: an update. Toxicology mechanisms and methods, 32(9), 650-661. https://doi.org/10.1080/15376516.2022.2064257.
  19. Ema, M., Okuda, H., Gamo, M., & Honda, K. (2017). A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reproductive toxicology (Elmsford, N.Y.), 67, 149-164. https://doi.org/10.1016/j.reprotox.2017.01.005.
  20. Qin, F., Shen, T., Li, J., Qian, J., Zhang, J., Zhou, G., & Tong, J. (2019). SF-1 mediates reproductive toxicity induced by Cerium oxide nanoparticles in male mice. Journal of nanobiotechnology, 17(1), article No. 41. https://doi.org/10.1186/s12951-019-0474-2.
  21. Iftikhar, M., Noureen, A., Jabeen, F., Uzair, M., Rehman, N., Sher, E. K., Katubi, K. M., Américo-Pinheiro, J. H. P., & Sher, F. (2023). Bioinspired engineered nickel nanoparticles with multifunctional attributes for reproductive toxicity. Chemosphere, 311(Pt 1), article No. 136927. https://doi.org/10.1016/j.chemosphere.2022.136927.
  22. Kong, L., Gao, X., Zhu, J., Zhang, T., Xue, Y., & Tang, M. (2017). Reproductive toxicity induced by nickel nanoparticles in Caenorhabditis elegans. Environmental toxicology, 32(5), 1530-1538. https://doi.org/10.1002/tox.22373.
  23. Hong, X., Shao, N., Yin, L., Li, C., Tao, G., Sun, Y., Qian, K., Yang, J., Xiao, P., Yu, X., & Zhou, Z. (2022). Exposure to zinc oxide nanoparticles affects testicular structure, reproductive development and spermatogenesis in parental and offspring male rats. Annals of translational medicine, 10(13), article No. 751. https://doi.org/10.21037/atm-22-3047.
  24. Singh S. (2019). Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicology mechanisms and methods, 29(4), 300-311. https://doi.org/10.1080/15376516.2018.1553221.
  25. Shahin, N.N., & Mohamed, M.M. (2017). Nano-sized titanium dioxide toxicity in rat prostate and testis: Possible ameliorative effect of morin. Toxicology and applied pharmacology, 334, 129-141. https://doi.org/10.1016/j.taap.2017.08.014.
  26. Li, Y., Zhong, M., He, X., Zhang, R., Fu, Y., You, R., Tao, F., Fang, L., Li, Y., & Zhai, Q. (2023). The combined effect of titanium dioxide nanoparticles and cypermethrin on male reproductive toxicity in rats. Environmental science and pollution research international, 30(9), 22176-22187. https://doi.org/10.1007/s11356-022-23796-x.
  27. Gamal, A., Kortam, L.E., El Ghareeb, A.E.W., & El Rahman, H.A.A. (2022). Assessment of the potential toxic effect of magnetite nanoparticles on the male reproductive system based on immunological and molecular studies. Andrologia, 54(11), article No. e14613. https://doi.org/10.1111/and.14613.
  28. Verma, G.S., Nirmal, N.K., & John, P.J. (2022). Iron oxide nanoparticles reversibly affect sperm quality in Wistar rats. Andrologia, 54(11), article No. e14631. https://doi.org/10.1111/and.14631.
  29. Al-Shaibani, S.W., Hussein, H.J., Jawad, H.K., Al-Kelaby, W.J.A., & Al-Rubaie, S.A.I. (2022). Physiological and histological study of the calcium oxide nanoparticles effect on the testis of male Wistar rats. Wiadomosci lekarskie (Warsaw, Poland : 1960), 75(5 pt 2), 1313-1316. https://doi.org/10.36740/WLek202205215.
  30. Asadi, F., Mohseni, M., Dadashi Noshahr, K., Soleymani, F. H., Jalilvand, A., & Heidari, A. (2017). Effect of Molybdenum Nanoparticles on Blood Cells, Liver Enzymes, and Sexual Hormones in Male Rats. Biological trace element research, 175(1), 50-56. https://doi.org/10.1007/s12011-016-0765-5.
  31. Shaban, E.E., Salama, D.M., Abd El-Aziz, M.E., Ibrahim, K.S., Nasr, S.M., Desouky, H.M., & Elbakry, H.F.H. (2022). The effect of exposure to MoO3-NP and common bean fertilized by MoO3-NPs on biochemical, hematological, and histopathological parameters in rats. Scientific reports, 12(1), article No. 12074. https://doi.org/10.1038/s41598-022-16022-8.
  32. Lopez-Chaves, C., Soto-Alvaredo, J., Montes-Bayon, M., Bettmer, J., Llopis, J., & Sanchez-Gonzalez, C. (2018). Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine: nanotechnology, biology, and medicine, 14(1), 1-12. https://doi.org/10.1016/j.nano.2017.08.011.
  33. Jarrar, Q., Al-Doaiss, A., Jarrar, B. M., & Alshehri, M. (2022). On the toxicity of gold nanoparticles: Histological, histochemical and ultrastructural alterations. Toxicology and industrial health, 38(12), 789-800. https://doi.org/10.1177/07482337221133881.
  34. Anreddy, R.N.R. (2018). Copper oxide nanoparticles induces oxidative stress and liver toxicity in rats following oral exposure. Toxicology reports, 5, 903-904. https://doi.org/10.1016/j.toxrep.2018.08.022.
  35. Liu, T., Xiao, B., Xiang, F., Tan, J., Chen, Z., Zhang, X., Wu, C., Mao, Z., Luo, G., Chen, X., & Deng, J. (2020). Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nature communications, 11(1), article No. 2788. https://doi.org/10.1038/s41467-020-16544-7.
  36. Cholewińska, E., Juśkiewicz, J., Majewski, M., Smagieł, R., Listos, P., Fotschki, B., Godycka-Kłos, I., & Ognik, K. (2022). Effect of Copper Nanoparticles in the Diet of WKY and SHR Rats on the Redox Profile and Histology of the Heart, Liver, Kidney, and Small Intestine. Antioxidants (Basel, Switzerland), 11(5), article No. 910. https://doi.org/10.3390/antiox11050910.
  37. Katao, K., Honma, R., Kato, S., Watanabe, S., & Imai, J. (2011). Influence of platinum nanoparticles orally administered to rats evaluated by systemic gene expression profiling. Experimental animals, 60(1), 33-45. https://doi.org/10.1538/expanim.60.33.
  38. Medhat, A., Mansour, S., El-Sonbaty, S., Kandil, E., & Mahmoud, M. (2017). Evaluation of the antitumor activity of platinum nanoparticles in the treatment of hepatocellular carcinoma induced in rats. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 39(7), article No. 1010428317717259. https://doi.org/10.1177/1010428317717259.
  39. Park, S.H., Lim, J.O., Kim, W.I., Park, S.W., Lee, S.J., Shin, I.S., Moon, C., Kim, J.H., Heo, J.D., & Kim, J.C. (2022). Subchronic Toxicity Evaluation of Aluminum Oxide Nanoparticles in Rats Following 28-Day Repeated Oral Administration. Biological trace element research, 200(7), 3215-3226. https://doi.org/10.1007/s12011-021-02926-5.
  40. Souza, M. R., Mazaro-Costa, R., & Rocha, T. L. (2021). Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. The Science of the total environment, 769, article No. 144354. https://doi.org/10.1016/j.scitotenv.2020.144354.
  41. Habas, K., Demir, E., Guo, C., Brinkworth, M. H., & Anderson, D. (2021). Toxicity mechanisms of nanoparticles in the male reproductive system. Drug metabolism reviews, 53(4), 604-617. https://doi.org/10.1080/03602532.2021.1917597.
  42. Wang, R., Song, B., Wu, J., Zhang, Y., Chen, A., & Shao, L. (2018). Potential adverse effects of nanoparticles on the reproductive system. International journal of nanomedicine, 13, 8487-8506. https://doi.org/10.2147/IJN.S170723.
  43. Lokman, M., Ashraf, E., Kassab, R.B., Abdel Moneim, A.E., & El-Yamany, N.A. (2022). Aluminium Chloride-Induced Reproductive Toxicity in Rats: the Protective Role of Zinc Oxide Nanoparticles. Biological trace element research, 200(9), 4035-4044. https://doi.org/10.1007/s12011-021-03010-8.
  44. Yousef, M.I., Abd, H.H., Helmy, Y.M., & Kamel, M.A. (2021). Synergistic effect of curcumin and chitosan nanoparticles on nano-hydroxyapatite-induced reproductive toxicity in rats. Environmental science and pollution research international, 28(8), 9362-9376. https://doi.org/10.1007/s11356-020-11395-7.

Download full text in PDF