Bulletin "Veterinary biotechnology"

Cite: Yevstafieva V., Dolhin O. Efektyvnist symbiotyku «Enteronormin» v kompleksnii antyhelmintnii terapii sobak za trykhurozu [Efficiency of the use of symbiotics Enteronormin in the complex antihelminth therapy of dogs for trichuriasis]. Veterynarna biotekhnolohiia – Veterinary biotechnology, 44, 29-40. https://doi.org/10.31073/vet_biotech44-02 [in Ukrainian].

 

YEVSTAFIEVA V.1,2, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., DOLHIN O., e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

1Poltava State Agrarian University

2Institute of Veterinary Medicine of the National Academy of Agrarian Sciences of Ukraine

 

EFFICIENCY OF THE USE OF SYMBIOTICS ENTERONORMIN IN THE COMPLEX ANTIHELMINTH THERAPY OF DOGS FOR TRICHURIASIS

    Introduction. Among the helminthiases of dogs, gastrointestinal nematodes are widespread, and one of the leading places is occupied by trichuriasis, caused by a nematode of the species Trichuris vulpis. This parasite feeds on blood in the place of localization, namely in the large intestines. Parasites have the ability to generate significant changes in the morphological structure of the intestinal wall, influence the immune system and the composition of the microflora.

   The goal of the work was to determine the effectiveness of the use of the symbiotic drug in the complex anthelmintic therapy of dogs for trichuriasis, taking into account the effect of the combined therapy on the intestinal microbiocenosis of animals.

   Materials and methods. Laboratory diagnosis of trichuriasis in dogs was carried out by flotation methods of coproovoscopy. In order to establish the effectiveness of treatment schemes for trichuriasis in dogs, anthelmintic drugs Profender and Wormikil were used in combination with the symbiotic Enteronormin. In order to determine the composition of the intestinal microbiocenosis, culture was inoculated in nutrient and selective media. The effectiveness of treatment regimens was determined on 3, 7 and 14 days after the start of therapy based on the results of coproovoscopic and microbiological studies.

   Results of research and discussion. Conducted studies have proven the feasibility of using the symbiotic Enteronormin (probiotics – lactic acid bacteria Enterococcus faecalis, Lactobacillus salivarius and spore-forming bacteria Bacillus subtilis; prebiotics – water-soluble chitosan, peptones) in the complex antiparasitic treatment of dogs with trichuriasic infestation. Its use shortens the recovery period of infected dogs, increases the therapeutic effectiveness of Profender and Wormikill anthelmintics, and restores the balance of indigenous intestinal microflora.

   Conclusions and prospects for further research:

   1. Profander (Bayer, Germany) is the most effective anthelmintic for the specific therapy of dogs for trichurosis, where the indicators of extensive and intensive effectiveness on the 7th day reached 100 %. When using the anthelmintic Wormikil (Ukrzoovetprompostach, Ukraine), its 100 % effectiveness was established only for 14th day.

   2. Complex treatment of dogs with trichuriasic infestation with the simultaneous use of anthelmintics and symbiotic Enteronormin increases their effectiveness and shortens the recovery period of animals.

   3. The use of the symbiotic Enteronormin contributes to the restoration of the composition of the indigenous intestinal microflora of dogs during the period of elimination of the causative agent of trichuriasis.

   The results obtained by us regarding the effectiveness of the complex treatment of dogs for trichuriasis will be used in the following trials regarding the economic justification of the proposed therapy schemes.

Keywords: trichuriasis, dogs, treatment, antiparasitic drugs, symbiotic, effectiveness, intestinal microbiota.

REFERENCES

  1. Traversa, D. (2011). Are we paying too much attention to cardio-pulmonary nematodes and neglecting old-fashioned worms like Trichuris vulpis? Parasites & Vectors, 4, 32. https://doi.org/10.1186/1756-3305-4-32.
  2. Vanparijs, O., Hermans, L., & van der Flaes, L. (1991). Helminth and protozoan parasites in dogs and cats in Belgium. Veterinary Parasitology, 38(1), 67-73. https://doi.org/10.1016/0304-4017(91)90010-s.
  3. Venco, L., Valenti, V., Genchi, M., & Grandi, G. (2011). A dog with pseudo-addison disease Associated with Trichuris vulpis infection. Journal of Parasitology Research, 682039. https://doi.org/10.1155/2011/682039.
  4. Šmigová, J., Papajová, I., Šoltys, J., Pipiková, J., Šmiga, Ľ., Šnábel, V., Takáčová, J., & Takáč, L. (2021). The occurence of endoparasites in Slovakian household dogs and cats. Veterinary Research Communications, 45(4), 243-249. https://doi.org/10.1007/s11259-021-09804-4.
  5. Soulsby, E.J.L. (1982). Helminths, arthropods and protozoa of domesticated animals; 7th ed. Baillière Tindall, London.
  6. Bowman, D.D. (2014). Georgi’s parasitology for veterinarians; 10th ed. Elsevier, St. Louis, Missouri.
  7. Taylor, M.A., Coop, R.L., & Wall, R.L. (2007). Veterinary parasitology; 3th ed. Blackwell Publishing, Oxford.
  8. Burrows, R. B., & Lillis, W. G. (1964). The whipworm as a blood sucker. Journal of Parasitology, 50, 675-680.
  9. Huang, Z., Pan, Z., Yang, R., Bi, Y., & Xiong, X. (2020). The canine gastrointestinal microbiota: early studies and research frontiers. Gut Microbes, 11(4), 635-654. https://doi.org/10.1080/19490976.2019.1704142.
  10. Suchodolski, J. S. (2022). Analysis of the gut microbiome in dogs and cats. Veterinary Clinical Pathology, 50(1), 6-17. https://doi.org/10.1111/vcp.13031.
  11. Karo-Atar, D., Gregorieff, A., & King, I. L. (2023). Dangerous liaisons: how helminths manipulate the intestinal epithelium. Trends in Parasitology, 39(6), 414-422. https://doi.org/10.1016/j.pt.2023.03.012.
  12. Loke, P., & Harris, N.L. (2023). Networking between helminths, microbes, and mammals. Cell host & Microbe, 31(4), 464-471. https://doi.org/10.1016/j.chom.2023.02.008.
  13. Hasnain, S.Z., Gallagher, A.L., Grencis, R.K., & Thornton, D.J. (2013). A new role for mucins in immunity: insights from gastrointestinal nematode infection. International Journal of Biochemistry & Cell Biology, 45(2), 364-374. https://doi.org/10.1016/j.biocel.2012.10.011.
  14. Sepehri, S., Kotlowski, R., Bernstein, C.N., & Krause, D.O. (2007). Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflammatory Bowel Diseases, 13(6), 675-683. https://doi.org/10.1002/ibd.20101.
  15. Lee, S.C., Tang, M.S., Lim, Y.A., Choy, S.H., Kurtz, Z.D., Cox, L.M., Gundra, U.M., Cho, I., Bonneau, R., Blaser, M.J., Chua, K.H., & Loke, P. (2014). Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Neglected Tropical Diseases, 8(5), e2880. https://doi.org/10.1371/journal.pntd.0002880.
  16. Morton, E.R., Lynch, J., Froment, A., Lafosse, S., Heyer, E., Przeworski, M., Blekhman, R., & Ségurel, L. (2015). Variation in Rural African Gut Microbiota Is Strongly Correlated with Colonization by Entamoeba and Subsistence. PLoS Genetics, 11(11), e1005658. https://doi.org/10.1371/journal.pgen.1005658.
  17. Ott, S. J., Musfeldt, M., Wenderoth, D. F., Hampe, J., Brant, O., Fölsch, U. R., Timmis, K. N., & Schreiber, S. (2004). Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut, 53(5), 685-693. https://doi.org/10.1136/gut.2003.025403.
  18. Yang, C.A., Liang, C., Lin, C.L., Hsiao, C.T., Peng, C.T., Lin, H.C., & Chang, J.G. (2017). Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response. PLoS Neglected Tropical Fiseases, 11(9), e0005963. https://doi.org/10.1371/journal.pntd.0005963.
  19. Trach, V.N. (1981). Prostejshij metod vyjavlenija i ucheta jaic gelmintov v fekalijah zhivotnyh [The easiest method of identifying and addressing the helminth eggs in the feces of animals]: vtorаjа Zakavkazskajа konferencii po parazitologii (28–30 nojabrja 1979 hoda) –Proceedings of the second Zakavkazskoj conference on parasitology. (pp. 229-231). Erevan [in Russian].
  20. Hoult, Dzh., Krig, N., Snit, P., Steyli, Dzh., & Uillyams, S. (1997). Opredelitel bakteriy Berdzhi [Determinant of bacteria Berdzhi]. Moscow: Mir [in Russian].
  21. Kupritz, J., Angelova, A., Nutman, T.B., & Gazzinelli-Guimaraes, P.H. (2021). Helminth-induced human gastrointestinal dysbiosis: a systematic review and meta-analysis reveals insights into altered taxon diversity and microbial gradient collapse. mBio, 12(6), e0289021. https://doi.org/10.1128/mBio.02890-21.
  22. Easton, A. V., Raciny-Aleman, M., Liu, V., Ruan, E., Marier, C., Heguy, A., Yasnot, M. F., Rodriguez, A., & Loke, P. (2020). Immune Response and Microbiota Profiles during Coinfection with Plasmodium vivax and Soil-Transmitted Helminths. mBio, 11(5), e01705-20. https://doi.org/10.1128/mBio.01705-20.
  23. Reda. A.A. (2018). Probiotics for the control of helminth zoonosis. Journal of Veterinary Medicine, 4178986. https://doi.org/10.1155/2018/4178986.
  24. Dea-Ayuela, M.A., Rama-Iñiguez, S., & Bolás-Fernandez, F. (2008). Enhanced susceptibility to Trichuris muris infection of B10Br mice treated with the probiotic Lactobacillus casei. International Immunopharmacology, 8(1), 28-35. https://doi.org/10.1016/j.intimp.2007.10.003.
  25. Mohamed, A.H., Osman, G.Y., Zowail, M.E., & El-Esawy, H.M. (2016). Effect of Lactobacillus sporogenes (probiotic) on certain parasitological and molecular aspects in Schistosoma mansoni infected mice. Journal of Parasitic Diseases, 40(3), 823-832. https://doi.org/10.1007/s12639-014-0586-4.

 Download full text in PDF