Bulletin "Veterinary biotechnology"

Cite: Kyivska G.V., Mezhenskyi A.O., Kulykova V.V., Drozhzhe Zh.M. Epidemiolohichni aspekty hrypu konei u sviti(ohliadova stattia). [Epidemiological aspects of equine influenza in the world (review article)] Veterynarna biotekhnolohiia – Veterinary biotechnology, 46, 26-46. https://doi.org/10.31073/vet_biotech46-02 [in Ukrainian].

 

Kyivska G.V. 1, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Mezhenskyi A.O. 2, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Kulykova V.V. 1, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Drozhzhe Zh.M. 1, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

1 State Research Institute for Laboratory Diagnostics and Veterinary Sanitary Expertise

2 Institute of Veterinary Medicine, NAAS of Ukraine, Kyiv, Ukraine 

 

EPIDEMIOLOGICAL ASPECTS OF EQUINE INFLUENZA IN THE WORLD (REVIEW ARTICLE)

Introduction. Equine influenza (EI) is a highly contagious respiratory disease that affects horses and has significant economic consequences for the global equine industry. It has a worldwide distribution and cases must be reported to the World Organisation for Animal Health (WOAH). Understanding the epidemiology of the disease, risk factors and enabling conditions is important to prevent the introduction of equine influenza virus.

The goal of the work. A review of historical and modern data on the spread of equine influenza in the world, general trends and risk factors.

Materials and methods. Analysis of literature sources devoted to a comprehensive study of equine influenza.

Results of research and discussion. Influenza virus (IV) is easily transmitted by direct contact and airborne droplets, which allows for rapid spread over long distances. Strengthening international ties in sports and equine breeding contributes to the risks of EI spread.

The high antigenic variability of IV gives it significant potential for interspecies infection, incl. humans, horses, dogs, cats, birds, marine mammals, bats, pigs. There is evidence of human infection with EIV, with the first confirmed cases of human infection from contact with horses being reported in 1957 in Ukraine by serological diagnostics. Currently, EI is known to be caused by only two main subtypes of the virus – H3N8 and H7N7, with the latter not being detected since the 1970s. So far, only EIV H3N8 causes significant economic losses in horse breeding. The H3N8 subtype emerged in 1963 in America and has since spread throughout the world, continuing to cause epizootics. In the 1980s, H3N8 further diverged into American and Eurasian lineages. The American lineage subsequently branched into Kentucky, South American, and Florida sublineages. The Florida sublineage underwent additional evolution in the early 2000s, resulting in two subtypes: Florida Clade 1 (FC1) and Florida Clade 2 (FC2).

Recent research data from Ukrainian scientists indicate that equine influenza virus type A is currently circulating among unvaccinated domestic horses in Ukraine.

Travel has been shown to affect the prevalence of diseases due to stress factors and effects on the immune response, shared housing and contact of horses at shows, breeding, sales, as well as different levels of biosecurity between these events [66.7.7].

There are many risk factors for the occurrence of EI epidemics, both natural and anthropogenic. The presence of wind, especially high speed from infected areas, increased the risk of EIV transmission to horses downwind, such as during the 2007 Australian outbreak. In addition, multiple epidemiological analyses of several outbreaks have confirmed the role of humidity and temperature in EIV transmission. In particular, low temperatures and dry conditions have been found to be correlated with disease incidence [49.5.20].

Conclusions and prospects for further research. Knowledge and understanding of the history and transmission routes of equine influenza virus, as well as risk factors, will help prevent the introduction and spread of the disease among domestic soled animals. However, due to the high variability of the virus, the effectiveness of existing vaccines must be continually monitored and adjustments made in a timely manner. EI is characterized by high morbidity and low mortality, which determines its infectiousness and rapid spread between susceptible horse hosts. Therefore, it is important to conduct timely and correct laboratory tests using molecular diagnostics to identify the equine influenza virus, since it is impossible to diagnose EI based only on clinical signs due to their atypicality.

Keywords: equine influenza, epidemiology, risk factors, vaccination.

REFERENCES

  1. Rash, A., Morton, R., Woodward, A., Maes, O., Mccauley, J., Bryant, N. & Elton, D. (2017). Evolution and divergence of H3N8 equine influenza viruses circulating in the United Kingdom from 2013 to 2015. Pathogens, 6,6. http:// doi: 10.3390/pathogens6010006.
  2. Zhu, H., Damdinjav, B., Gonzalez, G., Patrono, L.V., Ramirez-Mendoza, H., Amat, J.A.R., Crispell, J., Parr, Y.A., Hammond, T.-a., Shiilegdamba, E., et al. (2019). Absence of adaptive evolution is the main barrier against influenza emergence in horses in Asia despite frequent virus interspecies transmission from wild birds. PLoS Pathog., 15. http://doi: 10.1371/journal.ppat.1007531.
  3. Singh, R. K., Dhama, K., Karthik, K., Khandia, R., Munjal, A., Khurana, S. K., Chakraborty, S., Malik, Y. S., Virmani, N., Singh, R., et al. (2019). A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Front. Microbiol., 9. http://doi: 10.3389/fmicb.2018.01941.
  4. Dominguez, M., Münstermann, S., de Guindos, I. & Timoney, P. (2016). Equine disease events resulting from international horse movements: systematic review and lessons learned. Equine Vet J, 48, 641–653. http://doi: 10.1111/evj.12523.
  5. Chambers, T. M. (2022). Equine influenza. Cold Spring Harb Perspect Med, 4 (12-1), http://doi: 10.1101/cshperspect.a038331.
  6. Chappell, D. E., Barnett, D. C., James, K., Craig, B., Bain, F., Gaughan, E., Schneider, C., Vaala, W., Barnum, S. M. & Pusterla, N. (2023). Voluntary surveillance program for equine influenza virus in the United States during 2008–2021. Pathogens, 12:192. http://doi:10.3390/pathogens12020192.
  7. Yang, H., Xiao, Y., Meng, F., Sun, F., Chen, M., Cheng, Z., Chen, Y., Liu, S. & Chen, H. (2018). Emergence of H3N8 equine influenza virus in donkeys in China in 2017. Vet Microbiol., 214:1-6. http://doi: 10.1016. J. vetmic.2017.11.033.
  8. Kleij, L., Bruder, E., Raoux-Barbot, D., Lejal, N., Nevers, Q., Deloizy, C., Da Costa, B., Legrand, L., Barrey, E., Chenal, A., Pronost, S., Delmas B. & Dhorne-Pollet, S. (2024). Genomic characterization of equine influenza A subtype H3N8 viruses by long read sequencing and functional analyses of the PB1-F2 virulence factor of A/equine/Paris/1/2018. Veterinary Research, 55 (36). http://doi: 10.1186/s13567-024-01289-8.
  9. Sandybayev, N., Strochkov, V., Beloussov, V., Orkara, S., Kydyrmanov, A., Khan Y., Batanova Z. & Kassenov, M. (2023). Evaluation of a novel real-time polymerase chain reaction assay for identifying H3 equine influenza virus in Kazakhstan. Vet. World, 16(8), 1682-1689. http://doi: 10.14202/vetworld.1682-1689.
  10. Cullinane, A. & Newton, J. R. (2013). Equine influenza A global perspective. Vet. Microbiol., 167, 205–214. http://doi: 10.1016/j.vetmic.2013.03.029.
  11. Nedland, H., Wollman, J., Sreenivasan, C., Quast, M., Singrey, A., Fawcett, L., Christopher-Hennings, J., Nelson, E., Kaushik, R. S., Wang, D. & Li, F. (2018). Serological evidence for the co-circulation of two lineages of influenza D viruses in equine populations of the Midwest United States. Zoon Pub Heal, 65, 148-154. http://doi: 10.1111. zph.12423.
  12. Dominguez, M., Münstermann, S., de Guindos, I. & Timoney, P. (2016). Equine disease events resulting from international horse movements: Systematic review and lessons learned. Equine Vet. J., 48(5), 641–653. http://doi: 10.1111/evj.12523.
  13. Parrish, C. R., Murcia, P. R. & Holmes, E. C. (2016). Influenza virus reservoirs and intermediate hosts: Dogs, horses, and new possibilities for influenza virus exposure of humans. J. Virol., 89(6), 2990–2994. http://doi: 10.1128/JVI.03146-14.
  14. Wen, F., Blackmon, S., Olivier, A. K., Li, L., Guan, M., Sun, H., Wang, P. G. & Wan, X. F. (2018). Mutation W222L at the receptor binding site of hemagglutinin could facilitate viral adaption from equine influenza A(H3N8) virus to dogs. J. Virol., 92(18), 01115–01118. http://doi: 10.1128/JVI.01115-18.
  15. Xie, T., Anderson, B. D., Daramragchaa, U., Chuluunbaatar, M. & Gray, G. C. (2016). A review of evidence that equine influenza viruses are zoonotic. Pathogens, 5(3), 01115-18.
  16. Gaidamaka, M. G., Vaganov, G. P., Dromashko, A. S., Shvetskava, B. D. & Fyadina, D. D. (1959). Disease of the upper respiratory tract in horses following the human influenza epidemic of 1957. Bull. World Health Organ., 20(2–3), 505–508.
  17. Webster, R. G. (1993). Are equine 1 influenza viruses still present in horses? Equine Vet J., 25, 537–538. http://doi: 10.1111/j.2042-3306.1993.tb03009.x.
  18. Sovinova, O., Tumova B. & Pouska, F. (1958). Isolation of a virus causing respiratory disease in horses. Acta Virol., 2(1), 52–61.
  19. Karamendin, K., Kydyrmanov, A., Sayatov, M., Strochkov, V., Sandybayev, N. & Sultankulova, K. (2016). Retrospective analysis of the equine influenza virus A/equine/kirgizia/26/1974 (H7N7) isolated in Central Asia. Pathogens, 5(3), 55. http://doi: 10.3390/pathogens5030055.
  20. Scholtens, R. G. & Steele, J. H. (1964). U.S. epizootic of equine influenza, 1963. Epizootiology. Public Health Rep., 79(5), 393–402.
  21. International Equine Disease Report, Second Quarter. (2016). Retrieved from: https://thehorse.com/18845/international-equine-disease-report-second-quarter-2016.
  22. Gonzalez-Obando, J., Zuluaga-Cabrera, A., Moreno, I., Úsuga, J., Ciuderis, K., Forero, J. E., Diaz, A., Rojas-Arbeláez, C., Hernández-Ortiz, J. P. & Ruiz-Saenz J. (2024). First Molecular Detection and Epidemiological Analysis of Equine Influenza Virus in Two Regions of Colombia, 2020–2023. Viruses, 16(6), 839. https://doi.org/10.3390/v16060839.
  23. Waddell, G. H., Teigland M. B. & Sigel M. M. (1963). A new influenza virus associated with equine respiratory disease. J Am Vet Med Assoc., 143, 587–590.
  24. Cullinane, A. & Newton, J. R. (2013). Equine influenza‑A global perspective. VetMicrobiol. 167, 205–214. https://doi.10.1016/j.vetmic.2013.03.029.
  25. Chappell, D. E., Barnett, D. C., James, K., Craig, B., Bain, F., Gaughan, E., Schneider, C, Vaala, W., Barnum, S. M. & Pusterla, N. (2023). Voluntary surveillance program for equine influenza virus in the United States during 2008–2021. Pathogens, 12, 192. https://doi.10.3390/pathogens12020192.
  26. Daly, J. M., Lai, A. C. K., Binns, M. M., Chambers, T. M., Barrandeguy, M. & Mumford, J. A. (1996). Antigenic and genetic evolution of equine H3N8 influenza A viruses. J. Gen. Virol., 77, 661–671. https://doi. 10.1099/0022-1317-77-4-661.
  27. Lai, A. C. K., Chambers, T. M., Holland, R. E., Morley, P. S., Haines, D. M., Townsend, H. G. G. & Barrandeguy, M. (2001). Diverged evolution of recent equine‑2 influenza (H3N8) viruses in the Western Hemisphere. Arch. Virol., 146,1063–1074. https://doi.10.1007/s007050170106.
  28. Bryant, N. A., Rash, A. S., Russell, C. A., Ross, J., Cooke, A., Bowman, S., MacRae, S., Lewis, N. S., Paillot, R., Zanoni, R., Meier, H., Griffiths, L. A., Daly, J. M., Tiwari, A., Chambers, T. M., Newton, J. R. & Elton, D. M. (2009). Antigenic and genetic variations in European and North American equine influenza virus strains (H3N8) isolated from 2006 to 2007. Vet Microbiol., 138, 41–52. https://doi. 10.1016/j.vetmic.2009.03.004.
  29. Bryant, N. A., Rash, A. S., Woodward, A. L., Medcalf, E., Helwegen, M., Wohlfender, F., Cruz, F., Herrmann, C., Borchers, K., Tiwari, A., Chambers, T. M., Newton, J. R., Mumford, J. A. & Elton, D. M. (2011). Isolation and characterisation of equine influenza viruses (H3N8) from Europe and North America from 2008 to 2009. Vet Microbiol., 147, 19–27. https://doi. 10.1016/j.vetmic.2010.05.040.
  30. Paillot, R., Pitel, P‑H., Pronost, S., Legrand, L., Fougerolle, S., Jourdan, M. & Marcillaud‑Pitel, C. (2019). Florida clade 1 equine influenza virus in France. Vet Rec., 184, 101. https://doi.10.1136/vr.l1203.
  31. Walker‑Panse, L., Rash, A., Huckstep, J., Payne, S., Blake, S., Whitlock, F., Elton, D., Newton, R. & Bryant, N.A. (2021). Equine influenza virus surveillance in the United Kingdom from 2019 to 2021. Equine Vet. J. 53, 78–79.
  32. Fougerolle, S., Fortier, C., Legrand, L., Jourdan, M., Marcillaud‑Pitel, C., Pronost, S. & Paillot, R. (2019). Success and limitation of equine influenza vaccination: the first incursion in a decade of a Florida clade 1 equine influenza virus that shakes protection despite high vaccine coverage. Vaccines (Basel). 7, 174. https://doi.10.3390/vaccines7040174.
  33. Rula, M., Muzyka, N. M., Drozhzhe, Zh. M., Pishchanskyi, V., Stegniy, B. T. & Muzyka, D. V. (2024). Serological monitoring of Influenza A among wild and domestic ungulates in Ukraine. Journal for Veterinary Medicine, Biotechnology and Biosafety., Vol. 10, Issue 3, 29–36.
  34. Gonzalez-Obando, J., Forero, J.E., Zuluaga-Cabrera, A. M. & Ruiz-Saenz, J. (2022). Equine Influenza Virus: An Old Known Enemy in the Americas. Vaccines, 10, 1718. https://doi.10.3390/vaccines10101718.
  35. Oladunni, F. S., Oseni, S. O., Martinez-Sobrido, L. & Chambers, T. M. (2021). Equine Influenza Virus and Vaccines. Viruses, 13, 1657. https://doi. 10.3390/v13081657.
  36. Olguin-Perglione, C., Vissani, M. A., Alamos, F., Tordoya, M. S. & Barrandeguy, M. (2020). Multifocal outbreak of equine influenza in vaccinated horses in Argentina in 2018: Epidemiological aspects and molecular characterisation of the involved virus strains. Equine Vet. J., 52, 420–427. https://doi. 10.1111/evj.13176.
  37. Firestone, S. M., Cogger, N., Ward, M. P., Toribio, J. A., Moloney, B. J. & Dhand, N. K. (2012). The influence of meteorology on the spread of influenza: survival analysis of an equine influenza (a/H3N8) outbreak. PLoS One, 7, 35284. https://doi: 10.1371/journal.pone.0035284.
  38. Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L, et al. (2021).  Infectious disease in an era of global change. Nat Rev Microbiol., 9, 193–205. https://doi: 10.3390/vetsci9110606.
  39. Spatiotemporal pattern and suitable areas analysis of equine influenza in global scale. (2005–2022). Front. Vet. Sci., 03 June 2024 Sec. Veterinary Epidemiology and Economics,Vol. 11 – 2024. https://doi.org/10.3389/fvets.2024.1395327.
  40. Diallo, A. A., Souley, M. M., Issa I., A., Alassane, A., Issa, R., Gagara, H., et al. (2021). Transboundary spread of equine influenza viruses (H3N8) in west and Central Africa: molecular characterization of identified viruses during outbreaks in Niger and Senegal, in 2019. Transbound Emerg Dis., 68,1253–62. https://doi: 10.1111/tbed.13779.
  41. Sack, A., Cullinane, A., Daramragchaa, U., Chuluunbaatar, M., Gonchigoo, B. & Gray, G.C. (2019). Equine influenza virus - a neglected, Reemergent disease threat. Emerg Infect Dis., 25, 1185–91. https://doi:10.3201/eid2506.161846.
  42. Dominguez, M., Münstermann, S., de Guindos, I. & Timoney, P. (2016). Equine disease events resulting from international horse movements: systematic review and lessons learned. Equine Vet J., 48, 641–53. https://doi:10.1111/evj.12523.
  43. Katherine, E. E. J. & Ghedin, E. (2020). Quantifying between-host transmission in influenza virus infections. Cold Spring Harb Perspect Med. 10, a038422. https://doi: 10.1101/cshperspect.a038422.
  44. Juzeniene, A., Ma, L. W., Kwitniewski, M., Polev, G. A., Lagunova, Z., Dahlback, A., et al. (2010). The seasonality of pandemic and non-pandemic influenzas: the roles of solar radiation and vitamin D. Int, J, Infect, Dis., 14, e1099–105. https://doi: 10.1016/j.ijid.2010.09.002.
  45. Whitlock, F., Grewar, J. & Newton, R. (2023). An epidemiological overview of the equine influenza epidemic in Great Britain during. Equine Vet. J., 55, 153–64. https://doi: 10.1111/evj.13874.
  46. Mejdell, C. M., Bøe, K. E. & Jørgensen, G. H. M. (2020). Caring for the horse in a cold climate—reviewing principles for thermoregulation and horse preferences. Appl. Anim. Behav. Sci., 231, 105071. https:// doi: 10.1016/j.applanim.2020.105071.
  47. Jørgensen, G. H. M., Aanensen, L., Mejdell, C. M. & Bøe, K. E. (2016). Preference for shelter and additional heat in horses exposed to Nordic winter conditions. Equine Vet J., 48, 720–6. https://doi: 10.1111/evj.12522.
  48.  Ding, J., Wang, Y., Liang, J., He Z. et. al. (2024). Spatiotemporal pattern and suitable areas analysis of equine influenza in global scale (2005–2022). Front. Vet. Sci.Veterinary Epidemiology and Economics, Vol. 11. https://doi.org/10.3389/fvets.2024.1395327.
  49. Fougerolle, S., Legrand, L., Lecouturier, F., Sailleau, C., Paillot, R., Hans, A. & Pronost, S. (2017). Genetic evolution of equine influenza virus strains (H3N8) isolated in France from 1967 to 2015 and the implications of several potential pathogenic factors. Virol., 505, 210–217. https://doi.10.1016/j.virol.02.003.
  50. Reemers, S., Sonnemans, D., Horspool, L., van Bommel, S., Cao, Q. & van de Zande, S. (2020). Determining equine influenza virus vaccine efficacy – the specific contribution of strain versus other vaccine attributes. Vaccines. 8(3), 501. https://doi.10.3390/vaccines8030501.
  51. James, N., MacLachlan, E. & Dubovi, J. (2017). Arteriviridae and roniviridae. UK. Elsevier. 463–476. https://doi.10.1016/B978-0-12-800946-8.00025-8.
  52. Daly, J. M., Megid, J., Langoni, H., de Nardi Júnior, G. & Ribeiro, M. G. (2021). Retrospective serological survey for influenza in horses from Brazil. Braz J Microbiol., 52, 461–466. https://doi.10.1007/s42770-020-00398-88.
  53. Lopez, A. & Martinson, S. A. (2017). Respiratory system, mediastinum, and pleurae: Pathologic basis of veterinary disease. China: Elsevier, 471–560. https://doi. 10.1016%2FB978-0-323-35775-3.00009-6.
  54. Crispe, E., Finlaison, D. S., Hurt, A. C. & Kirkland, P. D. (2011). Infection of dogs with equine influenza virus: Evidence for transmission from horses during the Australian outbreak. Aust. Vet. J., 89, 27–28. https://doi.10.1111/j.1751-0813.2011.00734.x.
  55. Yondon, M., Zayat, B., Nelson, M. I., Heil, G. L., Anderson, B. D., Lin, X., Halpin, R. A., McKenzie, P. P., White, S. K., Wentworth, D. E. & Gray, G. C. (2014). Equine influenza A (H3N8) virus isolated from Bactrian camel, Mongolia. Emerg Infec Dis., 20, 2144. https://doi. 10.3201/eid2012.140435.
  56. Larson, K. R., Heil, G. L., Chambers, T. M., Capuano, A., White, S. K. & Gray, G. C. (2015). Serological evidence of equine influenza infections among persons with horse exposure, Iowa. J Clin Virol., 67, 78–83. https://doi.10.1016/j.jcv.2015.04.009.
  57. Ata, E. B., Shaapan, R. M., Nasr S. & Abdel-Shafy S. (2023). Role of evolutionary epidemiology in the determination of the risk factors associated with some equine viral diseases. Iraqi Journal of Veterinary Sciences, 37(1), 143-150. https://doi.10.33899/ijvs.2022.133433.2228.
  58. Bambra, W., Daly, J. M., Kendall, N. R., Gardner, D. S., Brennan, M. & Kydd, J. H. (2020). Equine influenza vaccination as reported by horse owners and factors influencing their decision to vaccinate or not. Prev Vet Med., 180, 105011. https://doi. 10.1016/j.prevetmed.2020.105011.
  59. OIE (World Organisation for Animal Health), African horse sickness, aetiology epidemiology diagnosis prevention and control references. Anim Heal Inf Database. 2021, 1-4.
  60. Bolfa, P., Jeon, I., Loftis, A., Leslie, T., Marchi, S., Sithole, F., Beck, C., Lecollinet, S., Zientara, S., Hans, A. & Issel, C.J. (2017). Detection of West Nile Virus and other common equine viruses in three locations from the Leeward Islands, West Indies Acta Trop., 174, 24–28. https://doi.10.1016/j.actatropica.2017.06.023.
  61. Daly, J. M., Megid, J., Langoni, H., de Nardi Júnior, G. & Ribeiro, M. G. (2021). Retrospective serological survey for influenza in horses from Brazil. Braz J Microbiol., 52, 461–466. https://doi.10.1007/s42770-020-00398-8.
  62. Chambers, T. M. (2020). A Brief introduction to equine influenza and equine influenza viruses. Methods Mol Biol., 355–360. https://doi.10.1007/978-1-0716-0346-8_26.
  63. Duane, E., Chappell, D., Barnett, C., James, K., Craig B., et all. (2023). Voluntary Surveillance Program for Equine Influenza Virus in the United States during 2008–2021. Pathogens, 12(2), 192. https://doi.org/10.3390/pathogens12020192.
  64. Equine Influenza, OIE Technical Disease Card 2019. The World Organization for Animal Health (Office International des Epizooties, or OIE). Retrieved from: www.oie.int/app/uploads/2022/02/equine-influenza-wild-equidae.
  65. Muirhead, T. L., McClure, J. T., Wichtel, J. J., Stryhn, H., Frederick Markham, R. J., McFarlane, D. & Lunn, D. P. (2008). The Effect of Age on Serum Antibody Titers after Rabies and Influenza Vaccination in Healthy Horses. J. Vet. Intern. Med., 22, 654–661. https://doi. 10.1111/j.1939-1676.2008.0091.x.
  66. Vaala, W., Barnett, D. C., James, K., Chappell, D., Craig, B., Gaughan, E., Bain, F., Barnum, S. & Pusterla, N. (2019). Prevalence Factors Associated with Equine Influenza Virus Infection in Equids with Upper Respiratory Tract Infection from 2008 to 2019. Am. Assoc. Equine Pract., 65, 385–386.
  67. Equine Influenza, Risk-Based Vaccination Guidelines, AAEP. Retrieved from: https://aaep.org/guidelines/vaccination-guidelines/risk-based-vaccination-guidelines/equine-influenza.
  68. Sack, A., Cullinane, A., Daramragchaa, U., Chuluunbaatar, M., Gonchigoo, B. & Gray, G. C. (2019). Equine Influenza Virus - A Neglected, Reemergent Disease Threat. Emerg. Infect. Dis., 25, 1186–1191.
  69. Landolt, G. (2014). Equine Influenza Virus. Vet. Clin. Equine Pract., 30, 507–522. https://doi.10.1016/j.cveq.2014.08.003.
  70. Baker, D. J. (1986). Rationale for the use of influenza vaccines in horses and the importance of antigenic drift. Equine Vet. J., 18, 93–96. https://doi.10.1111/j.2042-3306.1986.tb03554.x.
  71. Daly, J. M., Lai, A. C., Binns, M. M., Chambers, T. M., Barrandeguy, M. & Mumford, J. A. (1996). Antigenic and genetic evolution of equine H3N8 influenza A viruses. J. Gen. Virol., 77 (4), 661–671. https://doi.10.1099/0022-1317-77-4-661.
  72. OIE. Conclusions and recommendations from the consultation meeting of OIE and WHO experts on equine influenza, Newmarket, United Kingdom, September 18–19, 1995. OIE Bull. 1996, 108, 482–484.
  73. Lai, A. C., Chambers, T. M., Holland, R. E., Jr., Morley, P. S., Haines, D. M., Townsend, H. G. & Barrandeguy, M. (2001). Diverged evolution of recent equine-2 influenza (H3N8) viruses in the Western Hemisphere. Arch. Virol., 146, 1063–1074. https://doi.10.1007/s007050170106.
  74. Bryant, N. A., Rash, A. S., Russell, C. A., Ross, J., Cooke, A., Bowman, S., MacRae, S., Lewis, N. S., Paillot, R., Zanoni, R., et al. (2009). Antigenic and genetic variations in European and North American equine influenza virus strains (H3N8) isolated from 2006 to 2007. Vet. Microbiol., 138, 41–52. https://doi. 10.1016/j.vetmic.2009.03.004.
  75. Diallo, A. A., Souley, M. M., Issa I. A., Alassane, A., Issa, R., Gagara, H., Yaou, B., Issiakou, A., Diop, M., Ba Diouf, R.O., et al. (2020). Transboundary spread of equine influenza viruses (H3N8) in West and Central Africa: Molecular characterization of identified viruses during outbreaks in Niger and Senegal, in 2019. Transbound. Emerg. Dis., 68, 1253–1262. https://doi.10.1111/tbed.13779.
  76. Zahrebelnyi V. O., Mezhenskyi A. O. & Shatkovskyi A. P. (2011). Systema protyepizootychnykh zakhodiv v koniarstvi [The system of anti-epizootic measures in horse breeding]. Veterynarna praktyka [Veterinary practice], 7, 20–26[in Ukrainian].
  77. Mezhenskyi A. O. (2011). Profilaktyka zaraznykh khvorob konei v Ukraini: normatyvno-pravovi ta tekhnichni aspekty [Prevention of infectious diseases in horses in Ukraine: regulatory and technical aspects]. Veterynarna medytsyna Ukrainy [Veterinary Medicine of Ukraine], 10, 5–11 [in Ukrainian].
  78. Derzhavnyi reiestr veterynarnykh preparativ Derzhavnoi sluzhby Ukrainy z pytan bezpechnosti kharchovykh produktiv ta zakhystu spozhyvachiv [The state register of veterinary drugs of the State service of Ukraine on food safety and consumer protection]. Retrieved from:https://dpss.gov.ua/bezpechnist-harchovih-produktiv-ta-veterinarna-medicina/reyestri [in Ukrainian].

Download full text in PDF