Bulletin "Veterinary biotechnology"

Cite: Litarov V., Geyderikh O., Tarasov OZakonomirnist vplyvu antybiotykorezystentnosti na pihmentoutvoriuiuchi vlastyvosti synohniinoi palychky [The pattern of the influence of antibiotic resistance on pigment-forming properties of pseudomonas aeruginosa] Veterynarna biotekhnolohiia – Veterinary biotechnology, 46, 72-82. https://doi.org/10.31073/vet_biotech46-05 [in Ukrainian].

 

Litarov V., e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Geyderikh O., e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Tarasov O., e-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.

Institute of Veterinary Medicine, NAAS of Ukraine, Kyiv, Ukraine

 

 THE PATTERN OF THE INFLUENCE OF ANTIBIOTIC RESISTANCE ON PIGMENT-FORMING PROPERTIES OF PSEUDOMONAS AERUGINOSA

Introduction. The current problem in the treatment of infectious diseases is the steady increase in the proportion of pathogenic microorganisms that are resistant to most currently used antibacterial drugs. Pseudomonas is one of the most difficult bacterial infections to treat, requiring the use of combination therapy and the development of new treatment approaches.

The goal of the work. To select promising producer strains based on a comparative comparison of the pyocyanin-producing function of reference and clinical cultures of Pseudomonas aeruginosa. To determine the effect of antibiotic resistance on the ability of Pseudomonas aeruginosa to produce pyocyanin.

Materials and methods. The reference strain of Р. aeruginosa ATCC 27853, as well as clinical strains isolated from patients with pseudomonas infection of farm animals were used in this study. The susceptibility of Pseudomonas aeruginosa strains to antibiotics was determined by the paper disc method and by the method of double serial dilutions in liquid culture medium.

Results of research and discussion. Strains Isolate 3, Isolate 5, Isolate 6 showed positive dynamics of pyocyanin extracellularization with its maximum accumulation in the form of expressive dark blue staining of MPB on day 7-10 of cultivation, which was the basis for screening selection of these strains as pyocyanin producers. Along with this method of double serial dilutions in liquid culture medium, it was found that all strains showed a certain level of sensitivity to polymyxin as an antibiotic for directed antipyogenic use. The most effective producers were strains highly sensitive to polymyxin, and the least effective were those with medium and high levels of resistance to this antibiotic. Studying the levels of polymyxin susceptibility of reference and clinical strains of P. aeruginosa can be a definite indicator of their pigment-forming ability.

Conclusions and prospects for further research. 1. All studied strains of Pseudomonas aeruginosa demonstrated the ability to produce pyocyanin under culture conditions, but the degree of pigmentation varied significantly. Clinical isolates - Isolate 3, Isolate 5 and Isolate 6, showed the highest pyocyanin production capacity, confirming the potential of effective producers of this pigment.

2. High resistance of S. aureus strains to most of the antibiotics used, such as penicillins, tetracycline, cephalosporins and macrolides, was found, which confirms the expressed resistance.

3. It was found that strains with high sensitivity to polymyxin also demonstrate a high level of pyocyanin production, which allows using sensitivity to this antibiotic as an indicative criterion for determining the pigment-forming properties of strains.

These results emphasize the importance of studying the relationships between antibiotic resistance, pigmentation, and susceptibility to various antibiotics in Pseudomonas aeruginosa to improve approaches to the selection of pyocyanin-producing strains. The ratio of polymyxin susceptibility and pigmentation of Pseudomonas aeruginosa strains is a criterion for selecting pyocyanin-producing strains.

Keywords. Pseudomonas aeruginosa, pigmentation, pyocyanin, antibiotic resistance.

REFERENCES

  1. Nguyen, L. T., Park, Y. H., & Cho, K. H. (2022). Antibiotic susceptibility of Pseudomonas aeruginosa strains isolated from feline otitis externa. Veterinary Medicine and Science, 8(2), 195–204.
  2. Hernandez, J. A., Lopez, M. S., & Gonzalez, R. E. (2023). Molecular epidemiology of multidrug-resistant Pseudomonas aeruginosa from canine urinary tract infections. Veterinary Research, 54, 22.
  3. Elshafiee EA, Nader SM, Dorgham SM, Hamza DA. (2019). Carbapenem-resistant Pseudomonas aeruginosa originating from farm animals and people in Egypt. J Vet Res. 63(3):333–337. doi: 10.2478/jvetres-2019-0049.
  4. Smith, A. B., Johnson, C. D., & Williams, E. F. (2019). Antimicrobial resistance patterns of Pseudomonas aeruginosa isolates from canine clinical cases in a veterinary teaching hospital (2013–2018). BMC Veterinary Research, 15(1), 112.
  5. Cao, H., Bald, D., & Koul, A. (2017). Antibiotic resistance mechanisms of Pseudomonas aeruginosa and approaches to overcome them. Advances in Experimental Medicine and Biology, 1031, 117-129.
  6. Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177-192. https://doi.org/10.1016/j.biotechadv.2018.11.013.
  7. Yang, J., Xu, J. F., & Liang, S. (2024). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and emerging treatment. Critical Reviews in Microbiology, 1–19. https://doi.org/10.1080/1040841X.2024.2429599
  8. Klochko V. V. (2017). Biosyntez antybiotykiv yak taksonomichnyi marker deiakykh vydiv Pseudomonas. Naukovi visti Natsionalnoho tekhnichnoho universytetu Ukrainy "Kyivskyi politekhnichnyi instytut". (3), 29-33. http://nbuv.gov.ua/UJRN/NVKPI_2017_3_6. [in Ukrainian].
  9. Hall, S., McDermott, C., Anoopkumar-Dukie, S., McFarland, A. J., Forbes, A., Perkins, A. V., Davey, A. K., Chess-Williams, R., Kiefel, M. J., Arora, D., & Grant, G. D. (2016). Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa. Toxins, 8(8), 236. https://doi.org/10.3390/toxins8080236
  10. EUCAST (2021). "Antimicrobial susceptibility testing: EUCAST disk diffusion method" (PDF). www.eucast.org. EUCAST. Retrieved March 16, 2021.
  11. DSTU EN ISO 20776-1:2014 (2014). Klinichni laboratorni doslidzhennia ta test-systemy dlia diahnostyky in vitro. Vyprobuvannia chutlyvosti infektsiinykh ahentiv ta otsiniuvannia kharakterystyk zasobiv dlia vyprobuvannia antymikrobnoi chutlyvosti. (EN ISO 20776-1:2006, IDT) [in Ukrainian].
  12. Hadzevych O. V. (2016). Faktory patohennosti zbudnyka psevdomonozu (ohliad literatury). Veterynarna medytsyna, 102, 75-78. [in Ukrainian].
  13. Garcia, M. N., Lee, S. H., & Kim, J. H. (2020). Prevalence and characterization of Pseudomonas aeruginosa isolated from bovine mastitis cases in dairy farms. Veterinary Microbiology, 244, 108684.
  14. Aleksieieva N. V., Duda Yu. V., Koreiba L. V. (2022). Psevdomonoz svynei. Tvarynnytstvo sohodni: shchomis. nauk.-prakt. zhurn, (1). 51-59. http://dspace.dsau.dp.ua/jspui/handle/123456789/6211. [in Ukrainian].].
  15. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng ZY. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 37(1):177–192. doi: 10.1016/j.biotechadv.2018.11.013.
  16. Li XZ, Plésiat P, Nikaido H. (2015). The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 28(2):337–418. doi: 10.1128/CMR.00117-14.
  17. Thacharodi A, Lamont IL. (2022). Aminoglycoside-modifying enzymes are sufficient to make Pseudomonas aeruginosa clinically resistant to key antibiotics. Antibiotics (Basel). 11(7):884. doi: 10.3390/antibiotics11070884.
  18. Venkataramana GP, Lalitha AK, Mariappan S, Sekar U. (2022). Plasmid-mediated fluoroquinolone resistance in Pseudomonas aeruginosa and Acinetobacter baumannii. J Lab Physicians. 14(3):271–277. doi: 10.1055/s-0042-1742636.
  19. Anderson, R. T., Martinez, P. G., & Thompson, K. L. (2021). Virulence factors and biofilm formation of Pseudomonas aeruginosa isolated from respiratory tract infections in horses. Journal of Veterinary Science, 22(3), 356–367.
  20. Klockgether, J., & Tümmler, B. (2017). Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000 Research, 6, 1261. doi: 10.12688/f1000research.10506.1
  21. Lee, J., Zhang, L., & Hwang, J. (2015). The role of quorum sensing in the biofilm formation of Pseudomonas aeruginosa. Biotechnology and Bioprocess Engineering, 20(4), 676-683.
  22. López-Causapé, C., Sommer, L. M., Cabot, G., Rubio, R., Ocampo-Sosa, A. A., & Johansen, H. K. (2017). Evolution of the Pseudomonas aeruginosa mutational resistome in an international cystic fibrosis clone. Scientific Reports, 7(1), 5555. doi: 10.1038/s41598-017-05621-5

Download full text in PDF