Cite: Panteleienko O., Tarasov O., Shevchenko M., Savchenyuk M., Goncharenko V., Mazur T. Virusleikozukotiv: etiolohichni, patohenetychnitaepidemiolohichniaspektyinfektsiivyevropi (ohliadovastattia). [Feline leukemia virus: etiologic, pathogenetic and epidemiologic aspects of infection in Europe (review article)]. Veterynarna biotekhnolohiia – Veterinary biotechnology, 46, 97-123. https://doi.org/10.31073/vet_biotech46-07 [in Ukrainian].
Panteleienko O. 1, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.,
Tarasov O. 2, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.,
ShevchenkoM. 1, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
SavchenyukM. 1, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
GoncharenkoV. 1, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Mazur T. 1, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
1 Bila Tserkva National Agrarian University
2 Institute of Veterinary Medicine, NAAS of Ukraine, Kyiv, Ukraine
FELINE LEUKEMIA VIRUS: ETIOLOGIC, PATHOGENETIC AND EPIDEMIOLOGIC ASPECTS OF INFECTION IN EUROPE (REVIEW ARTICLE)
Introduction. Feline leukemia virus (FeLV) is one of the most significant viral threats to domestic cats, responsible for progressive immunosuppression, oncogenesis, and increased susceptibility to secondary infections. Despite six decades of research, FeLV remains a challenge due to its genetic variability, complex pathogenesis, and diagnostic difficulties. The infection presents in progressive, regressive, focal, and abortive forms, complicating clinical identification and requiring multi-faceted diagnostic approaches.
The goal of the work. This review aims to comprehensively analyze the current knowledge about FeLV, including its etiology, molecular structure, replication, clinical manifestations, diagnostic strategies, and prevalence across Europe. Special attention is given to the variability in epidemiological data and the identification of research gaps hindering effective disease monitoring and prevention.
Materials and methods. The study follows the PRISMA guidelines for systematic reviews. Peer-reviewed publications from 2010–2024 were retrieved from PubMed, Scopus, Web of Science, and Google Scholar using keywords such as “FeLV,” “pathogenesis,” “epidemiology,” and “Europe.” Only full-text articles with clear methodological descriptions and original data were included.
Results of research and discussion. The virus exists in endogenous and exogenous forms, with subgroups FeLV-A, -B, and -C being clinically relevant. Progressive infection is associated with persistent viremia and poor prognosis, while regressive and abortive forms may remain latent or subclinical. Diagnostic accuracy varies: POC tests for antigen p27 are widely used but limited in detecting regressive cases, while PCR remains the gold standard for proviral DNA detection. Epidemiological data reveal striking regional differences in FeLV prevalence, ranging from <1% in Northern Europe to >20% in Eastern and Southern regions. Methodological inconsistencies across studies hinder pan-European surveillance.
Conclusions and prospects for further research. FeLV control requires improved diagnostic algorithms, expanded surveillance programs, and harmonization of testing protocols across Europe. Future studies should prioritize large-scale, multicenter investigations with standardized methods to inform vaccination strategies and public health policy. Understanding host-virus interactions and the role of endogenous FeLV elements is essential for advancing prevention and therapeutic options.
Keywords: feline viral leukemia, retrovirus, pathogenesis, clinical signs, prevalence, diagnosis.
REFERENCES
- Jarrett, W. F. H., Crawford, E. M., Martin, W. B., & Davie, F. (1964). Leukæmia in the cat: A virus-like particle associated with leukæmia (lymphosarcoma). Nature, 202(4932), 567–568. https://doi.org/10.1038/202567a0.
- Hartmann, K., & Hofmann-Lehmann, R. (2020). What’s new in feline leukemia virus infection. Veterinary Clinics of North America: Small Animal Practice, 50(5), 1013–1036. https://doi.org/10.1016/j.cvsm.2020.05.006.
- Anderson, M. M., Lauring, A. S., Burns, C. C., & Overbaugh, J. (2000). Identification of a cellular cofactor required for infection by feline leukemia virus. Science, 287(5459), 1828–1830. https://doi.org/10.1126/science.287.5459.1828.
- Giselbrecht, J., et al. (2023). Prevalence of different courses of feline leukaemia virus infection in four European countries. Viruses, 15(8), 1718. https://doi.org/10.3390/v15081718.
- Latrofa, M. S., et al. (2020). A molecular survey of vector-borne pathogens and haemoplasmas in owned cats across Italy. Parasites & Vectors, 13(1), Article 1. https://doi.org/10.1186/s13071-020-3990-x.
- Studer, N., et al. (2019). Pan-European study on the prevalence of the feline leukaemia virus infection—Reported by the European Advisory Board on Cat Diseases (ABCD Europe). Viruses, 11(11), 993. https://doi.org/10.3390/v11110993.
- Bolin, L. L., Ahmad, S., & Levy, L. S. (2011). The surface glycoprotein of a natural feline leukemia virus subgroup A variant, FeLV-945, as a determinant of disease outcome. Veterinary Immunology and Immunopathology, 143(3–4), 221–226. https://doi.org/10.1016/j.vetimm.2011.06.015.
- Beall, M. J., et al. (2021). Feline leukemia virus p27 antigen concentration and proviral DNA load are associated with survival in naturally infected cats. Viruses, 13(2), 302. https://doi.org/10.3390/v13020302.
- Westman, M. E., et al. (2017). Comparison of three feline leukaemia virus (FeLV) point-of-care antigen test kits using blood and saliva. Comparative Immunology, Microbiology and Infectious Diseases, 50, 88–96. https://doi.org/10.1016/j.cimid.2016.11.014.
- Hofmann-Lehmann, R., & Hartmann, K. (2020). Feline leukaemia virus infection: A practical approach to diagnosis. Journal of Feline Medicine and Surgery, 22(9), 831–846. https://doi.org/10.1177/1098612X20941785.
- Egberink, H., et al. (2022). Vaccination and antibody testing in cats. Viruses, 14(8), 1602. https://doi.org/10.3390/v14081602
- Krecic, M. R., Velineni, S., Meeus, P., Fan, H., & Loenser, M. (2018). Diagnostic performances of two rapid tests for detection of feline leukemia virus antigen in sera of experimentally feline leukemia virus-infected cats. Journal of Feline Medicine and Surgery Open Reports, 4(1), 2055116917748117. https://doi.org/10.1177/2055116917748117.
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336–341. https://doi.org/10.1016/j.ijsu.2010.02.007.
- Hartmann, K., Hofmann-Lehmann, R., & Sykes, J. E. (2021). Feline leukemia virus infection. In Greene’s infectious diseases of the dog and cat (5th ed., pp. 382–413). Elsevier. https://doi.org/10.1016/B978-0-323-50934-3.00032-X
- Ackerman, L. J. (2021). Pet‐specific care for the veterinary team. Wiley. https://doi.org/10.1002/9781119540687.
- Rojko, J. L., & Olsen, R. G. (1984). The immunobiology of the feline leukemia virus. Veterinary Immunology and Immunopathology, 6(1–2), 107–165. https://doi.org/10.1016/0165-2427(84)90050-3.
- Chiu, E. S., Hoover, E. A., & Vandewoude, S. (2018). A retrospective examination of feline leukemia subgroup characterization: Viral interference assays to deep sequencing. Viruses, 10(1), 29. https://doi.org/10.3390/v10010029
- Hewlett, M. J., & Chiu, W. (1991). Virion structure. In Structure and Function of the Retroviral Envelope Glycoproteins (pp. 79–90). Springer. https://doi.org/10.1007/978-3-642-76018-1_3.
- Willett, B. J., & Hosie, M. J. (2013). Feline leukaemia virus: Half a century since its discovery. The Veterinary Journal, 195(1), 16–23. https://doi.org/10.1016/j.tvjl.2012.07.004.
- Polani, S., Roca, A. L., Rosensteel, B. B., Kolokotronis, S. O., & Bar-Gal, G. K. (2010). Evolutionary dynamics of endogenous feline leukemia virus proliferation among species of the domestic cat lineage. Virology, 405(2), 397–407. https://doi.org/10.1016/j.virol.2010.06.010.
- Krunic, M., et al. (2015). Decreased expression of endogenous feline leukemia virus in cat lymphomas: A case control study. BMC Veterinary Research, 11(1), Article 378. https://doi.org/10.1186/s12917-015-0378-9.
- Levy, L. S. (2008). Advances in understanding molecular determinants in FeLV pathology. Veterinary Immunology and Immunopathology, 123, 80–91. https://doi.org/10.1016/j.vetimm.2008.01.008.
- Benveniste, R. E., Sherr, C. J., & Todaro, G. J. (1975). Evolution of type C viral genes: Origin of feline leukemia virus. Science, 190(4217), 886–888. https://doi.org/10.1126/science.52892.
- Sarma, P. S., & Log, T. (1971). Viral interference in feline leukemia-sarcoma complex. Virology, 44(2), 352–358. https://doi.org/10.1016/0042-6822(71)90266-2.
- Sarma, P. S., & Log, T. (1973). Subgroup classification of feline leukemia and sarcoma viruses by viral interference and neutralization tests. Virology, 54(1), 160–169. https://doi.org/10.1016/0042-6822(73)90125-6.
- Jarrett, O., Hardy, W. D., Golder, M. C., & Hay, D. (1978). The frequency of occurrence of feline leukaemia virus subgroups in cats. International Journal of Cancer, 21(3), 334–337. https://doi.org/10.1002/ijc.2910210314.
- Boomer, S., Gasper, P., Whalen, L. R., & Overbaugh, J. (1994). Isolation of a novel subgroup B feline leukemia virus from a cat infected with FeLV-A. Virology, 204(2), 805–810. https://doi.org/10.1006/viro.1994.1597.
- Erbeck, K., et al. (2021). Feline leukemia virus (FeLV) endogenous and exogenous recombination events result in multiple FeLV-B subtypes during natural infection. Journal of Virology, 95(18), e00353-21. https://doi.org/10.1128/jvi.00353-21.
- Hardy, W. D. (1993). Feline oncoretroviruses. In J. A. Levy (Ed.), The Retroviridae (pp. 109–180). Springer.
- Hartmann, K. (2012). Clinical aspects of feline retroviruses: A review. Viruses, 4(11), 2684–2710. https://doi.org/10.3390/v4112684.
- Ngo, M. H., et al. (2024). Multiple recombination events between endogenous retroviral elements and feline leukemia virus. Journal of Virology, 98(2), e01400-23. https://doi.org/10.1128/jvi.01400-23.
- Bolin, L. L., & Levy, L. S. (2011). Viral determinants of FeLV infection and pathogenesis: Lessons learned from analysis of a natural cohort. Viruses, 3(9), 1681–1698. https://doi.org/10.3390/v3091681.
- Rabson, A. B., & Graves, B. J. (1997). Synthesis and processing of viral RNA. Cold Spring Harbor Laboratory Press. Retrieved April 29, 2025, from https://www.ncbi.nlm.nih.gov/books/NBK19367/.
- Chameettachal, A., Mustafa, F., & Rizvi, T. A. (2023). Understanding retroviral life cycle and its genomic RNA packaging. Journal of Molecular Biology, 435(3), 167924. https://doi.org/10.1016/j.jmb.2022.167924.
- Jung, J., & Maria, S. (2024). Abordagem citopatológica de linfoma em terceira pálpebra de felino: Relato de caso.
- Grant, E. M. C. K., Cotter, S. M., Sliski, A. H., & Hardy, W. D. (n.d.). Leukemia specific antigens: FOCMA and immune surveillance.
- Rojko, J. L., Hoover, E. A., Mathes, L. E., Olsen, R. G., & Schaller, J. P. (1979). Pathogenesis of experimental feline leukemia virus infection. JNCI: Journal of the National Cancer Institute, 63(3), 759–768. https://doi.org/10.1093/jnci/63.3.759.
- Dovhenko, V., Chekalin, I., Naumchuk, V., Savchenyuk, M., & Tsarenko, T. (2022). Prevalence and diagnosis of retroviral infections in cats [Rozpovsiudzhennia ta diahnostyka retrovirusnykh infektsii u kotiv]. Naukovyi Visnyk Veterynarnoi Medytsyny, 1(173), 43–53. https://doi.org/10.33245/2310-4902-2022-173-1-43-53. [in Ukrainian].
- Fromont, E., et al. (2000). Prevalence and pathogenicity of retroviruses in wildcats in France. Veterinary Record, 146(11), 317–319. https://doi.org/10.1136/vr.146.11.317.
- Szilasi, A., et al. (2019). Prevalence of feline immunodeficiency virus and feline leukaemia virus in domestic cats in Hungary. Journal of Feline Medicine and Surgery Open Reports, 5(2), 2055116919892094. https://doi.org/10.1177/2055116919892094.
- Arjona, A., Escolar, E., Soto, I., Barquero, N., Martin, D., & Gomez-Lucia, E. (2000). Seroepidemiological survey of infection by feline leukemia virus and immunodeficiency virus in Madrid and correlation with some clinical aspects. Journal of Clinical Microbiology, 38(9), 3448–3449. Retrieved from https://journals.asm.org/journal/jcm.
- Perharić, M., et al. (2018). The epidemiology features of retroviral infections in domestic cats from the Zagreb urban area. Veterinarski Arhiv, 88(3), 345–354. https://doi.org/10.24099/vet.arhiv.170406b.
- Knotek, Z., et al. (1999). Epidemiology of feline leukaemia and feline immunodeficiency virus infections in the Czech Republic. Journal of Veterinary Medicine, Series B, 46(10), 665–671. https://doi.org/10.1046/j.1439-0450.1999.00302.x.
- Fusco, G., et al. (2023). Prevalence of feline leukemia virus and feline immunodeficiency virus in cats from southern Italy: A 10-year cross-sectional study. Frontiers in Veterinary Science, 10, 1260081. https://doi.org/10.3389/fvets.2023.1260081.
- Spada, E., et al. (2012). Seroprevalence of feline immunodeficiency virus, feline leukaemia virus and Toxoplasma gondii in stray cat colonies in northern Italy and correlation with clinical and laboratory data. Journal of Feline Medicine and Surgery, 14(6), 369–377. https://doi.org/10.1177/1098612X12437352.
- Meli, M. L., Pineroli, B., Geisser, E., & Hofmann-Lehmann, R. (2024). Prospective investigation of feline leukemia virus infection in stray cats subjected to a trap–neuter–return program in Switzerland. Viruses, 16(3), 394. https://doi.org/10.3390/v16030394.
- Szilasi, A., Dénes, L., Krikó, E., Murray, C., Mándoki, M., & Balka, G. (2020). Prevalence of feline leukaemia virus and feline immunodeficiency virus in domestic cats in Ireland. Acta Veterinaria Hungarica, 68(4), 413–420. https://doi.org/10.1556/004.2020.00056.
- de Almeida, P. M., Belas, A., Bragança, M., de Oliveira, J., & Viegas, C. (2025). Prevalence and genetic characterization of feline leukemia virus in Portuguese stray cats. BMC Veterinary Research, 21(1). https://doi.org/10.1186/s12917-025-04691-2.
- Sukura, A., Salminen, T., & Lindberg, L. A. (1992). A survey of FIV antibodies and FeLV antigens in free-roaming cats in the capital area of Finland. Acta Veterinaria Scandinavica, 33(1), 9–14. https://doi.org/10.1186/BF03546930.
- Firth, C. L., & Möstl, K. (2015). A survey of feline leukaemia virus antigenaemia among cats in eastern Austria: A retrospective analysis of serum samples routinely tested between 1996 and 2011. Journal of Feline Medicine and Surgery Open Reports, 1(2), 2055116915598336. https://doi.org/10.1177/2055116915598336.
- Englert, T., Lutz, H., Sauter-Louis, C., & Hartmann, K. (2012). Survey of the feline leukemia virus infection status of cats in Southern Germany. Journal of Feline Medicine and Surgery, 14(6), 392–398. https://doi.org/10.1177/1098612X12440531.
- Stavisky, J., Dean, R. S., & Molloy, M. H. (2017). Prevalence of and risk factors for FIV and FeLV infection in two shelters in the United Kingdom (2011–2012). Veterinary Record, 181(17), 451. https://doi.org/10.1136/vr.103857.
- Giselbrecht, J., et al. (2024). Evaluation of a revised point-of-care test for the detection of feline leukaemia p27 antigen and anti-p15E antibodies in cats. Viruses, 16(4), 614. https://doi.org/10.3390/v16040614.
- Beall, M. J., et al. (2021). Feline leukemia virus p27 antigen concentration and proviral DNA load are associated with survival in naturally infected cats. Viruses, 13(2), 302. https://doi.org/10.3390/v13020302.
- Liu, J., O’Connor, T., Beall, M., Chandrashekar, R., & Lappin, M. (2016). Evaluation of rapid diagnostic test kits for feline leukemia virus infection using samples from naturally infected cats. Journal of Feline Medicine and Surgery Open Reports, 2(2), 2055116916667757. https://doi.org/10.1177/2055116916667757.
- Kornya, M., Bienzle, D., & Beeler-Marfisi, J. (2023). Discordant FeLV p27 immunoassay and PCR test results in 21 cats with hematologic disorders. Journal of Feline Medicine and Surgery, 25(7). https://doi.org/10.1177/1098612X231183297.
- Torres, A. N., O’Halloran, K. P., Larson, L. J., Schultz, R. D., & Hoover, E. A. (2008). Development and application of a quantitative real-time PCR assay to detect feline leukemia virus RNA. Veterinary Immunology and Immunopathology, 123(1–2), 81–89. https://doi.org/10.1016/j.vetimm.2008.01.013.
- McLuckie, A. J., Barrs, V. R., Lindsay, S., Aghazadeh, M., Sangster, C., & Beatty, J. A. (2018). Molecular diagnosis of Felis catus gammaherpesvirus 1 (FcaGHV1) infection in cats of known retrovirus status with and without lymphoma. Viruses, 10(3), 128. https://doi.org/10.3390/v10030128.
- Boenzli, E., Hadorn, M., Hartnack, S., Huder, J., Hofmann-Lehmann, R., & Lutz, H. (2014). Detection of antibodies to the feline leukemia virus (FeLV) transmembrane protein p15E: An alternative approach for serological FeLV detection. Journal of Clinical Microbiology, 52(6), 2046–2052. https://doi.org/10.1128/JCM.02584-13.
- Westman, M. E., Hall, E., Norris, J. M., Meili, T., Hofmann-Lehmann, R., & Malik, R. (2024). Antiviral therapy in cats progressively infected with feline leukaemia virus: Lessons from a series of 18 consecutive cases from Australia. Australian Veterinary Journal, 102(9), 453–465. https://doi.org/10.1111/avj.13363
- European Advisory Board on Cat Diseases (ABCD). (2021). Feline leukaemia virus infection – ABCD recommendations and review of the literature. Retrieved April 21, 2025, from https://www.abcdcatsvets.org/wp-content/uploads/2023/01/ABCD-FeLV-Guideline-2021.pdf.
- Kokkinaki, K. G., Saridomichelakis, M. N., Leontides, L., Mylonakis, M. E., Konstantinidis, A. O., Steiner, J. M., Suchodolski, J. S., & Xenoulis, P. G. (2021). A prospective epidemiological, clinical, and clinicopathologic study of feline leukemia virus and feline immunodeficiency virus infection in 435 cats from Greece. Comparative immunology, microbiology and infectious diseases, 78, 101687. https://doi.org/10.1016/j.cimid.2021.101687.
- Torres, A. N., O’Halloran, K. P., Larson, L. J., Schultz, R. D., & Hoover, E. A. (2010). Feline leukemia virus immunity induced by whole inactivated virus vaccination. Veterinary Immunology and Immunopathology, 134(1–2), 122–131. https://doi.org/10.1016/j.vetimm.2009.10.017.
- Helfer-Hungerbuehler, A. K., Spiri, A. M., Riond, B., Grest, P., Boretti, F. S., & Hofmann-Lehmann, R. (2015). No benefit of therapeutic vaccination in clinically healthy cats persistently infected with feline leukemia virus. Vaccine, 33(13), 1578–1585. https://doi.org/10.1016/j.vaccine.2015.02.009.
- Little, S., Bienzle, D., Carioto, L., Chisholm, H., O'Brien, E., & Scherk, M. (2011). Feline leukemia virus and feline immunodeficiency virus in Canada: recommendations for testing and management. The Canadian veterinary journal = La revue veterinaire canadienne, 52(8), 849–855.
- Stone, A. E. S., et al. (2020). 2020 AAHA/AAFP Feline Vaccination Guidelines. Journal of Feline Medicine and Surgery, 22(9), 813–830. https://doi.org/10.1177/1098612X20941784.
Download full text in PDF